PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m945.
Published online 2009 July 18. doi:  10.1107/S1600536809027792
PMCID: PMC2977463

Bis{(E)-4-bromo-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]phenolato-κ2 N,O}copper(II)

Abstract

In the title complex, [Cu(C12H7BrClN2O)2], the CuII center is tetra­coordinated by two phenolate O and two azomethine N atoms from two independent bidentate 4-bromo-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]phenolate (L) ligands. In the crystal structure, the CuII atom has a distorted square-planar coordination environment. The inter­planar dihedral angles between the benzene and pyridine rings in the individual ligands are 63.83 (4) and 54.43 (3)°, indicating the pyridine ring to have considerably weaker steric hindrance.

Related literature

For the applications of phenoxy­imines, see: John et al. (2007 [triangle]). For the structures of salen-type bis­oxime complexes, see: Dong et al. (2009a [triangle],b [triangle]). Due to their chelating ability and positive redox potential, many copper(II) complexes are biologically active, see: Karmaka et al. (2007 [triangle]). For the preparation of (E)-[4-bromo-2-((2-chloro­pyridin-3-ylimino)meth­yl)]phenol, see: Dong et al. (2009c [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m945-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H7BrClN2O)2]
  • M r = 684.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m945-efi1.jpg
  • a = 20.406 (2) Å
  • b = 11.6378 (15) Å
  • c = 10.5787 (13) Å
  • β = 90.212 (2)°
  • V = 2512.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.29 mm−1
  • T = 298 K
  • 0.43 × 0.12 × 0.05 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.260, T max = 0.814
  • 11575 measured reflections
  • 4426 independent reflections
  • 2340 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.050
  • S = 0.88
  • 4426 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027792/hg2538sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027792/hg2538Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province and the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

supplementary crystallographic information

Comment

Phenoxy-imines are a versatile class of ligands that display a truly impressive range of diverse applications spanning from bioinorganic chemistry to coordination chemistry, chemical catalysis, and materials related applications (John et al., 2007). Due to their chelating ability and positive redox potential many copper(II) complexes are generally biologically active (Karmaka et al., 2007). As part of our ongoing research into the complexes between transition metals and phenoxy-imine ligands, we report here the synthesis and crystal structures of the title complex, bis{(E)-[4-bromo-2-((2-chloropyridin-3-ylimino)methyl-κN)] phenolato-κO1}copper(II) (Fig. 1).

In the asymmetric molecule unit of the title complex, the CuII center is tetracoordinated by two phenolic O and two azomethine N atoms from two ligand (L-) units and has a distorted square-planar coordination environment, which is similar to the salen-type bisoxime complexes (Dong et al., 2009a, Dong et al., 2009b). It was observed that all bond lengths are within normal ranges (Allen et al., 1987).

The interplane dihedral angles are found to be as follows: 63.83° between the phenyl ring (C2—C7) and pyridyl ring (N1/C8—C12), 54.43° between phenyl ring (C14—C19) and pyridyl ring (N3/C20—C24), indicating the pyridine ring having a considerable weaker steric hindrance. Besides, the dihedral angle between the coordination plane of O1—Cu1—N2 and O2—Cu1—N4 is 27.72 (3)°, indicating slight distortion toward tetrahedral geometry from the square planar structure.

Experimental

(E)-[4-Bromo-2-((2-chloropyridin-3-ylimino)methyl)]phenol(HL) was prepared according to previously reported procedure (Dong et al., 2009c). A blue solution of copper(II) acetate monohydrate (2.6 mg, 0.0013 mmol) in methanol (2 ml) was added dropwise to a pale-yellow solution of HL (8.1 mg, 0.0026 mmol) in methanol (4 ml) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and allowed to stand at room temperature for several days. With evaporation of the solvent, dark-brown needle-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1600 cm-1, ν Ar—O, 1242 cm-1, ν Cu—N, 445 cm-1 and ν Cu—O, 424 cm-1.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

[Cu(C12H7BrClN2O)2]F(000) = 1340
Mr = 684.65Dx = 1.810 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 20.406 (2) Åθ = 3.5–23.5°
b = 11.6378 (15) ŵ = 4.29 mm1
c = 10.5787 (13) ÅT = 298 K
β = 90.212 (2)°Needle-like, brown
V = 2512.2 (5) Å30.43 × 0.12 × 0.05 mm
Z = 4

Data collection

Siemens SMART 1000 CCD area-detector diffractometer4426 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
graphiteRint = 0.060
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→24
Tmin = 0.260, Tmax = 0.814k = −13→13
11575 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0002P)2] where P = (Fo2 + 2Fc2)/3
4426 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.25248 (3)0.22385 (4)0.41801 (5)0.04108 (16)
Br10.13387 (3)−0.36645 (4)0.54348 (6)0.0734 (2)
Br20.35180 (3)0.81346 (4)0.23403 (5)0.06505 (18)
Cl10.37963 (6)0.12525 (11)0.20905 (11)0.0646 (4)
Cl20.20549 (7)0.12485 (9)0.15999 (12)0.0644 (4)
N10.4802 (2)0.1582 (3)0.3542 (4)0.0521 (11)
N20.31148 (17)0.0920 (3)0.4578 (3)0.0363 (9)
N30.0797 (3)0.1474 (4)0.1537 (4)0.0752 (15)
N40.19682 (17)0.3327 (3)0.3208 (3)0.0358 (9)
O10.17657 (13)0.1421 (2)0.4686 (3)0.0435 (8)
O20.32382 (13)0.3273 (2)0.4265 (3)0.0437 (8)
C10.2900 (2)−0.0104 (3)0.4797 (3)0.0356 (11)
H10.3217−0.06660.49350.043*
C20.2227 (2)−0.0477 (3)0.4853 (4)0.0366 (12)
C30.1698 (2)0.0308 (4)0.4827 (4)0.0371 (12)
C40.1058 (2)−0.0135 (3)0.4983 (4)0.0480 (13)
H40.07020.03640.49820.058*
C50.0954 (2)−0.1300 (4)0.5138 (4)0.0551 (14)
H50.0530−0.15780.52300.066*
C60.1480 (2)−0.2060 (3)0.5158 (4)0.0486 (13)
C70.2108 (2)−0.1670 (3)0.5022 (4)0.0444 (13)
H70.2457−0.21850.50410.053*
C80.4174 (2)0.1324 (3)0.3550 (4)0.0378 (12)
C90.3807 (2)0.1104 (3)0.4641 (4)0.0354 (12)
C100.4137 (2)0.1121 (3)0.5773 (4)0.0438 (12)
H100.39160.09600.65200.053*
C110.4796 (2)0.1377 (4)0.5798 (5)0.0547 (14)
H110.50280.13890.65560.066*
C120.5103 (2)0.1615 (4)0.4666 (6)0.0524 (14)
H120.55450.18090.46880.063*
C130.2121 (2)0.4391 (4)0.3010 (4)0.0396 (12)
H130.18020.48510.26360.048*
C140.2736 (2)0.4933 (3)0.3312 (4)0.0353 (11)
C150.3267 (2)0.4341 (4)0.3864 (4)0.0348 (11)
C160.3869 (2)0.4935 (3)0.3971 (4)0.0442 (12)
H160.42260.45690.43460.053*
C170.3941 (2)0.6050 (4)0.3531 (4)0.0505 (14)
H170.43450.64160.35900.061*
C180.3414 (3)0.6615 (3)0.3007 (4)0.0443 (13)
C190.2818 (2)0.6099 (3)0.2905 (4)0.0434 (13)
H190.24640.65030.25720.052*
C200.1335 (2)0.1942 (4)0.2005 (5)0.0523 (14)
C210.1350 (2)0.2933 (4)0.2745 (4)0.0417 (12)
C220.0771 (3)0.3453 (4)0.3016 (5)0.0582 (15)
H220.07570.41030.35260.070*
C230.0194 (3)0.2987 (5)0.2509 (6)0.0788 (18)
H23−0.02090.33400.26440.095*
C240.0237 (3)0.2009 (6)0.1816 (6)0.093 (2)
H24−0.01510.16880.15140.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0426 (4)0.0358 (3)0.0447 (4)−0.0020 (3)−0.0014 (3)0.0047 (3)
Br10.0707 (4)0.0367 (3)0.1127 (5)−0.0049 (3)0.0121 (4)0.0083 (3)
Br20.0813 (5)0.0403 (3)0.0736 (4)−0.0137 (3)0.0085 (3)0.0061 (3)
Cl10.0733 (10)0.0825 (9)0.0381 (8)−0.0144 (8)0.0027 (7)0.0040 (7)
Cl20.0823 (11)0.0519 (7)0.0589 (9)−0.0004 (7)−0.0031 (7)−0.0107 (7)
N10.039 (3)0.066 (3)0.051 (3)−0.008 (2)0.009 (2)0.000 (2)
N20.041 (3)0.036 (2)0.033 (2)−0.0018 (19)0.0009 (19)0.0046 (18)
N30.072 (4)0.074 (3)0.080 (4)−0.023 (3)−0.024 (3)0.008 (3)
N40.041 (3)0.035 (2)0.032 (2)−0.0039 (19)−0.0021 (19)0.0037 (18)
O10.039 (2)0.0334 (16)0.058 (2)−0.0003 (15)0.0065 (15)0.0095 (16)
O20.042 (2)0.0348 (16)0.054 (2)−0.0035 (15)−0.0072 (15)0.0078 (16)
C10.043 (3)0.036 (3)0.028 (3)0.010 (2)−0.005 (2)0.001 (2)
C20.034 (3)0.036 (3)0.039 (3)−0.003 (2)0.002 (2)0.004 (2)
C30.042 (3)0.037 (3)0.033 (3)−0.002 (3)0.005 (2)0.001 (2)
C40.041 (4)0.038 (3)0.065 (4)0.001 (2)0.003 (3)0.006 (3)
C50.035 (3)0.048 (3)0.082 (4)−0.008 (3)0.001 (3)0.003 (3)
C60.053 (4)0.032 (3)0.061 (4)−0.005 (3)0.004 (3)0.003 (3)
C70.050 (4)0.035 (3)0.048 (3)0.006 (2)0.002 (3)0.001 (2)
C80.045 (3)0.036 (2)0.033 (3)0.006 (2)0.002 (3)0.004 (2)
C90.035 (3)0.034 (3)0.037 (3)0.001 (2)−0.001 (3)−0.005 (2)
C100.047 (4)0.052 (3)0.032 (3)0.001 (3)0.000 (3)0.008 (3)
C110.046 (4)0.062 (3)0.055 (4)0.005 (3)−0.012 (3)−0.003 (3)
C120.029 (3)0.051 (3)0.078 (4)0.002 (2)0.009 (3)−0.006 (3)
C130.042 (3)0.046 (3)0.031 (3)0.008 (3)0.001 (2)0.008 (2)
C140.038 (3)0.040 (3)0.027 (3)0.000 (3)0.005 (2)0.001 (2)
C150.032 (3)0.043 (3)0.029 (3)−0.006 (3)0.005 (2)−0.001 (2)
C160.048 (4)0.045 (3)0.040 (3)−0.006 (3)−0.002 (2)−0.003 (2)
C170.048 (4)0.051 (3)0.053 (4)−0.018 (3)0.010 (3)−0.015 (3)
C180.053 (4)0.032 (3)0.048 (3)−0.010 (3)0.007 (3)0.003 (2)
C190.054 (4)0.032 (3)0.044 (3)0.006 (2)0.006 (3)0.002 (2)
C200.054 (4)0.052 (3)0.051 (4)−0.017 (3)−0.012 (3)0.015 (3)
C210.042 (4)0.045 (3)0.038 (3)−0.010 (3)−0.007 (3)0.008 (3)
C220.043 (4)0.062 (3)0.070 (4)−0.001 (3)−0.004 (3)0.009 (3)
C230.048 (4)0.094 (5)0.094 (5)0.001 (4)−0.003 (4)0.033 (4)
C240.062 (5)0.106 (6)0.110 (6)−0.044 (5)−0.039 (4)0.026 (5)

Geometric parameters (Å, °)

Cu1—O21.891 (3)C6—C71.368 (5)
Cu1—O11.897 (2)C7—H70.9300
Cu1—N41.986 (3)C8—C91.402 (5)
Cu1—N21.994 (3)C9—C101.372 (5)
Br1—C61.912 (4)C10—C111.378 (5)
Br2—C181.916 (4)C10—H100.9300
Cl1—C81.726 (4)C11—C121.381 (5)
Cl2—C201.731 (5)C11—H110.9300
N1—C81.316 (5)C12—H120.9300
N1—C121.336 (6)C13—C141.439 (5)
N2—C11.291 (4)C13—H130.9300
N2—C91.429 (5)C14—C151.410 (5)
N3—C201.320 (5)C14—C191.434 (5)
N3—C241.335 (6)C15—C161.415 (5)
N4—C131.295 (4)C16—C171.387 (5)
N4—C211.427 (5)C16—H160.9300
O1—C31.311 (4)C17—C181.376 (6)
O2—C151.314 (4)C17—H170.9300
C1—C21.442 (5)C18—C191.361 (5)
C1—H10.9300C19—H190.9300
C2—C31.414 (5)C20—C211.395 (6)
C2—C71.421 (5)C21—C221.359 (5)
C3—C41.416 (5)C22—C231.400 (6)
C4—C51.382 (5)C22—H220.9300
C4—H40.9300C23—C241.358 (7)
C5—C61.390 (5)C23—H230.9300
C5—H50.9300C24—H240.9300
O2—Cu1—O1159.31 (12)C9—C10—H10120.2
O2—Cu1—N493.27 (13)C11—C10—H10120.2
O1—Cu1—N489.99 (13)C10—C11—C12118.2 (5)
O2—Cu1—N290.91 (13)C10—C11—H11120.9
O1—Cu1—N292.73 (13)C12—C11—H11120.9
N4—Cu1—N2160.68 (13)N1—C12—C11123.8 (5)
C8—N1—C12116.4 (4)N1—C12—H12118.1
C1—N2—C9117.8 (3)C11—C12—H12118.1
C1—N2—Cu1122.9 (3)N4—C13—C14126.4 (4)
C9—N2—Cu1119.3 (2)N4—C13—H13116.8
C20—N3—C24115.8 (5)C14—C13—H13116.8
C13—N4—C21117.7 (4)C15—C14—C19119.8 (4)
C13—N4—Cu1123.8 (3)C15—C14—C13123.1 (4)
C21—N4—Cu1118.4 (3)C19—C14—C13116.8 (4)
C3—O1—Cu1127.9 (3)O2—C15—C14124.1 (4)
C15—O2—Cu1128.5 (3)O2—C15—C16118.4 (4)
N2—C1—C2127.5 (4)C14—C15—C16117.4 (4)
N2—C1—H1116.2C17—C16—C15121.6 (4)
C2—C1—H1116.2C17—C16—H16119.2
C3—C2—C7120.2 (4)C15—C16—H16119.2
C3—C2—C1122.1 (4)C18—C17—C16119.9 (4)
C7—C2—C1117.5 (4)C18—C17—H17120.0
O1—C3—C2124.0 (4)C16—C17—H17120.0
O1—C3—C4118.1 (4)C19—C18—C17121.3 (4)
C2—C3—C4117.9 (4)C19—C18—Br2118.6 (4)
C5—C4—C3120.8 (4)C17—C18—Br2120.1 (4)
C5—C4—H4119.6C18—C19—C14119.9 (4)
C3—C4—H4119.6C18—C19—H19120.0
C4—C5—C6120.5 (4)C14—C19—H19120.0
C4—C5—H5119.7N3—C20—C21124.6 (5)
C6—C5—H5119.7N3—C20—Cl2114.8 (5)
C7—C6—C5120.7 (4)C21—C20—Cl2120.5 (4)
C7—C6—Br1118.8 (3)C22—C21—C20118.0 (4)
C5—C6—Br1120.4 (4)C22—C21—N4123.6 (4)
C6—C7—C2119.8 (4)C20—C21—N4118.4 (4)
C6—C7—H7120.1C21—C22—C23118.5 (5)
C2—C7—H7120.1C21—C22—H22120.7
N1—C8—C9124.8 (4)C23—C22—H22120.7
N1—C8—Cl1115.9 (3)C24—C23—C22118.4 (6)
C9—C8—Cl1119.3 (4)C24—C23—H23120.8
C10—C9—C8117.0 (4)C22—C23—H23120.8
C10—C9—N2121.6 (4)N3—C24—C23124.6 (6)
C8—C9—N2121.4 (4)N3—C24—H24117.7
C9—C10—C11119.7 (4)C23—C24—H24117.7
O2—Cu1—N2—C1172.5 (3)C1—N2—C9—C10−72.8 (5)
O1—Cu1—N2—C112.8 (3)Cu1—N2—C9—C10106.5 (4)
N4—Cu1—N2—C1−84.9 (5)C1—N2—C9—C8109.8 (4)
O2—Cu1—N2—C9−6.8 (3)Cu1—N2—C9—C8−70.8 (4)
O1—Cu1—N2—C9−166.4 (3)C8—C9—C10—C111.7 (6)
N4—Cu1—N2—C995.8 (5)N2—C9—C10—C11−175.7 (4)
O2—Cu1—N4—C13−9.1 (3)C9—C10—C11—C120.2 (6)
O1—Cu1—N4—C13150.5 (3)C8—N1—C12—C111.1 (7)
N2—Cu1—N4—C13−111.3 (5)C10—C11—C12—N1−1.8 (7)
O2—Cu1—N4—C21173.9 (3)C21—N4—C13—C14−175.0 (4)
O1—Cu1—N4—C21−26.6 (3)Cu1—N4—C13—C147.9 (6)
N2—Cu1—N4—C2171.7 (5)N4—C13—C14—C150.9 (7)
O2—Cu1—O1—C3−117.9 (4)N4—C13—C14—C19174.6 (4)
N4—Cu1—O1—C3142.8 (4)Cu1—O2—C15—C142.2 (6)
N2—Cu1—O1—C3−18.0 (4)Cu1—O2—C15—C16−176.8 (3)
O1—Cu1—O2—C15−94.3 (5)C19—C14—C15—O2180.0 (3)
N4—Cu1—O2—C154.4 (3)C13—C14—C15—O2−6.6 (6)
N2—Cu1—O2—C15165.5 (3)C19—C14—C15—C16−1.0 (6)
C9—N2—C1—C2176.4 (4)C13—C14—C15—C16172.4 (4)
Cu1—N2—C1—C2−2.9 (6)O2—C15—C16—C17177.9 (4)
N2—C1—C2—C3−8.4 (7)C14—C15—C16—C17−1.2 (6)
N2—C1—C2—C7175.7 (4)C15—C16—C17—C181.8 (6)
Cu1—O1—C3—C212.6 (6)C16—C17—C18—C19−0.2 (7)
Cu1—O1—C3—C4−168.5 (3)C16—C17—C18—Br2−177.7 (3)
C7—C2—C3—O1179.4 (4)C17—C18—C19—C14−2.0 (7)
C1—C2—C3—O13.6 (7)Br2—C18—C19—C14175.5 (3)
C7—C2—C3—C40.5 (6)C15—C14—C19—C182.6 (6)
C1—C2—C3—C4−175.3 (4)C13—C14—C19—C18−171.3 (4)
O1—C3—C4—C5−179.9 (4)C24—N3—C20—C21−0.3 (7)
C2—C3—C4—C5−0.9 (6)C24—N3—C20—Cl2−178.6 (4)
C3—C4—C5—C60.8 (7)N3—C20—C21—C220.6 (7)
C4—C5—C6—C7−0.2 (7)Cl2—C20—C21—C22178.8 (3)
C4—C5—C6—Br1177.7 (3)N3—C20—C21—N4178.7 (4)
C5—C6—C7—C2−0.3 (7)Cl2—C20—C21—N4−3.0 (5)
Br1—C6—C7—C2−178.1 (3)C13—N4—C21—C22−53.4 (6)
C3—C2—C7—C60.1 (7)Cu1—N4—C21—C22123.8 (4)
C1—C2—C7—C6176.1 (4)C13—N4—C21—C20128.5 (4)
C12—N1—C8—C91.1 (6)Cu1—N4—C21—C20−54.3 (5)
C12—N1—C8—Cl1−178.6 (3)C20—C21—C22—C23−1.8 (7)
N1—C8—C9—C10−2.5 (6)N4—C21—C22—C23−179.9 (4)
Cl1—C8—C9—C10177.1 (3)C21—C22—C23—C242.8 (8)
N1—C8—C9—N2174.9 (4)C20—N3—C24—C231.4 (9)
Cl1—C8—C9—N2−5.4 (5)C22—C23—C24—N3−2.7 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2538).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009a). Acta Cryst. E65, m802. [PMC free article] [PubMed]
  • Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009b). Acta Cryst. E65, m803. [PMC free article] [PubMed]
  • Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009c). Inorg. Chem. Commun.12, 234–236.
  • John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044.
  • Karmaka, R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2007). J. Mol. Struct.826, 75–81.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography