PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m978.
Published online 2009 July 22. doi:  10.1107/S1600536809028190
PMCID: PMC2977452

Tetra­aqua­(1,10-phenanthroline)nickel(II) 3,6-dicarboxy­bicyclo­[2.2.2]oct-7-ene-2,5-dicarboxyl­ate

Abstract

In the title compound, [Ni(C12H8N2)(H2O)4](C12H10O8), the NiII ion is six-coordinated by two N atoms from one phenanthroline ligand and by the O atoms of four water mol­ecules in a distorted octa­hedral geometry. In the crystal, inter­molecular O—H(...)O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal packing.

Related literature

For a related structure, see Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m978-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H8N2)(H2O)4](C12H10O8)
  • M r = 593.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m978-efi1.jpg
  • a = 7.446 (5) Å
  • b = 13.583 (6) Å
  • c = 22.982 (9) Å
  • β = 91.549 (7)°
  • V = 2323.5 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 293 K
  • 0.30 × 0.28 × 0.17 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick 1996 [triangle]) T min = 0.756, T max = 0.855
  • 14211 measured reflections
  • 5636 independent reflections
  • 4321 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.133
  • S = 1.10
  • 5636 reflections
  • 382 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL-Plus.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028190/cv2585sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028190/cv2585Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation for Young Teachers of Northeast Normal University for support (grant No. 20080305).

supplementary crystallographic information

Comment

Coordination polymers based on poly(carboxylic acids) have been investigated in the area of solid state and material science (Liu et al., 2008). We selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H4L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a complex, [Ni(phen)(H2O)4][(H2L)], which is reported here.

In the title compound (I) (Fig. 1), each NiII ion is six-coordinated by two N atoms from one phenanthroline molecule and by four O atoms from four water molecules in a distorted octahedral environment. In the crystal structure, ions are linked by O—H···O hydrogen bonds (Table 1).

Experimental

A mixture of H4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and NiCl2.2H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 100°C for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement

C-bound and hydroxy H atoms were geometrically positioned (C–H 0.93 Å, O–H 0.82 Å) and refined as riding, with Uiso(H)= 1.2-1.5 Ueq of the parent atom. The H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85±0.02 Å, and some of them were isotropically refined, while the rest of water' H-atoms were refined as riding with Uiso(H)=1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Ni(C12H8N2)(H2O)4](C12H10O8)F(000) = 1232
Mr = 593.18Dx = 1.696 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5636 reflections
a = 7.446 (5) Åθ = 3.0–28.3°
b = 13.583 (6) ŵ = 0.91 mm1
c = 22.982 (9) ÅT = 293 K
β = 91.549 (7)°Block, green
V = 2323.5 (18) Å30.30 × 0.28 × 0.17 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer5636 independent reflections
Radiation source: fine-focus sealed tube4321 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick 1996)h = −9→8
Tmin = 0.756, Tmax = 0.855k = −14→18
14211 measured reflectionsl = −29→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0737P)2 + 0.0226P] where P = (Fo2 + 2Fc2)/3
5636 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.27952 (4)0.16490 (2)−0.000262 (12)0.02453 (12)
O30.8856 (3)0.08862 (13)0.10988 (7)0.0376 (5)
O80.8695 (3)0.49129 (14)0.26041 (8)0.0426 (5)
O50.7531 (3)0.27133 (14)0.41536 (7)0.0373 (5)
O60.5963 (3)0.36870 (14)0.35586 (8)0.0399 (5)
O70.9935 (3)0.42968 (14)0.34205 (8)0.0401 (5)
H71.00050.48780.35140.060*
O40.7696 (3)0.23715 (14)0.09583 (8)0.0441 (5)
O10.6022 (3)−0.02746 (14)0.22071 (9)0.0508 (6)
H10.5256−0.05890.20240.076*
C140.6501 (3)0.19162 (17)0.27782 (10)0.0236 (5)
H140.57490.15180.30310.028*
O4W0.0076 (3)0.13193 (18)−0.00734 (9)0.0413 (5)
C180.8609 (3)0.19220 (16)0.19325 (9)0.0232 (5)
H180.98760.17830.20260.028*
C230.7086 (3)0.30189 (18)0.36551 (10)0.0261 (5)
O20.5126 (3)0.09191 (15)0.16145 (9)0.0502 (6)
C50.2366 (5)0.5506 (2)0.02235 (17)0.0571 (9)
H50.23480.61110.04130.069*
O3W0.3341 (3)0.06193 (16)−0.06306 (9)0.0455 (5)
C170.8282 (3)0.30067 (16)0.20957 (9)0.0215 (5)
H170.89020.34470.18290.026*
N20.2543 (3)0.27843 (15)−0.06039 (8)0.0270 (4)
C130.7483 (3)0.12471 (17)0.23318 (10)0.0243 (5)
H130.83030.08070.25470.029*
C190.5369 (3)0.26471 (17)0.24367 (10)0.0268 (5)
H190.41320.26990.24720.032*
N10.2510 (3)0.28369 (16)0.05628 (8)0.0284 (5)
O1W0.5511 (3)0.17925 (18)0.00568 (9)0.0436 (5)
C160.9011 (3)0.31475 (16)0.27256 (10)0.0232 (5)
H161.02430.28930.27330.028*
C120.2464 (3)0.37093 (19)0.02772 (11)0.0292 (5)
C200.6303 (3)0.32107 (17)0.20793 (10)0.0268 (5)
H200.57740.36880.18410.032*
C220.8323 (4)0.17204 (18)0.12814 (10)0.0270 (5)
C150.7941 (3)0.24788 (16)0.31430 (9)0.0236 (5)
H150.87810.19910.33070.028*
C40.2392 (4)0.4628 (2)0.05558 (13)0.0421 (7)
C240.9147 (4)0.42251 (18)0.29031 (10)0.0286 (5)
C210.6078 (4)0.06232 (17)0.20067 (11)0.0291 (5)
O2W0.2891 (4)0.05750 (18)0.06329 (10)0.0535 (6)
C110.2481 (4)0.36777 (18)−0.03492 (11)0.0295 (5)
C90.2349 (4)0.3574 (2)−0.15295 (12)0.0400 (7)
H90.22910.3514−0.19330.048*
C20.2350 (4)0.3740 (3)0.14546 (12)0.0435 (7)
H20.23170.37260.18590.052*
C10.2445 (4)0.2857 (2)0.11400 (11)0.0377 (6)
H1A0.24640.22640.13430.045*
C80.2324 (4)0.4475 (2)−0.12781 (13)0.0440 (7)
H80.22490.5037−0.15090.053*
C70.2409 (4)0.4560 (2)−0.06704 (13)0.0410 (7)
C30.2306 (4)0.4607 (2)0.11710 (14)0.0491 (8)
H30.22190.51920.13790.059*
C100.2463 (4)0.2735 (2)−0.11797 (11)0.0330 (6)
H100.24840.2120−0.13570.040*
C60.2366 (5)0.5477 (2)−0.03657 (17)0.0603 (10)
H60.23380.6063−0.05750.072*
HW110.608 (4)0.203 (2)0.0338 (8)0.035 (8)*
HW120.618 (4)0.190 (2)−0.0236 (9)0.063 (11)*
HW41−0.045 (6)0.163 (3)−0.0348 (13)0.12 (2)*
HW42−0.063 (5)0.128 (3)0.0208 (12)0.086 (14)*
HW310.273 (4)0.017 (2)−0.0808 (14)0.068 (12)*
HW320.418 (4)0.072 (3)−0.0868 (14)0.081*
HW210.191 (3)0.045 (3)0.0794 (16)0.081*
HW220.370 (4)0.051 (3)0.0900 (14)0.096 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02791 (19)0.02203 (18)0.02354 (18)0.00082 (12)−0.00149 (13)0.00083 (12)
O30.0548 (13)0.0316 (10)0.0263 (9)0.0051 (9)−0.0030 (9)−0.0066 (8)
O80.0632 (14)0.0291 (10)0.0349 (10)−0.0053 (9)−0.0107 (9)0.0035 (8)
O50.0533 (13)0.0376 (11)0.0210 (8)0.0078 (9)0.0010 (8)0.0027 (8)
O60.0540 (13)0.0357 (11)0.0300 (10)0.0183 (9)0.0041 (9)0.0010 (8)
O70.0578 (13)0.0266 (9)0.0351 (10)−0.0064 (9)−0.0133 (9)−0.0012 (8)
O40.0745 (16)0.0287 (10)0.0282 (9)−0.0031 (9)−0.0150 (9)0.0067 (8)
O10.0688 (16)0.0326 (11)0.0503 (12)−0.0225 (10)−0.0133 (11)0.0088 (9)
C140.0260 (12)0.0218 (11)0.0231 (11)−0.0028 (9)0.0042 (9)0.0010 (9)
O4W0.0308 (11)0.0613 (14)0.0319 (11)−0.0050 (10)0.0007 (9)0.0032 (10)
C180.0272 (12)0.0215 (11)0.0210 (11)0.0011 (9)−0.0003 (9)0.0019 (9)
C230.0334 (14)0.0245 (12)0.0206 (11)−0.0027 (10)0.0019 (10)−0.0002 (9)
O20.0563 (14)0.0408 (12)0.0521 (13)−0.0081 (10)−0.0261 (11)0.0006 (10)
C50.072 (2)0.0250 (16)0.074 (2)0.0029 (14)−0.0051 (19)−0.0120 (16)
O3W0.0501 (14)0.0389 (12)0.0476 (12)−0.0010 (10)0.0042 (10)−0.0199 (10)
C170.0268 (12)0.0186 (11)0.0192 (10)−0.0039 (9)0.0000 (9)0.0021 (9)
N20.0311 (11)0.0262 (11)0.0236 (10)0.0009 (8)−0.0011 (8)0.0011 (8)
C130.0299 (13)0.0205 (11)0.0226 (11)−0.0002 (9)0.0005 (10)0.0006 (9)
C190.0237 (12)0.0268 (12)0.0297 (12)0.0013 (9)−0.0028 (10)−0.0004 (10)
N10.0308 (12)0.0314 (12)0.0229 (10)0.0003 (9)−0.0014 (8)−0.0016 (9)
O1W0.0281 (11)0.0796 (17)0.0229 (10)−0.0082 (10)−0.0016 (8)−0.0010 (10)
C160.0246 (12)0.0229 (12)0.0219 (11)−0.0008 (9)−0.0010 (9)−0.0004 (9)
C120.0309 (14)0.0259 (12)0.0307 (13)0.0002 (10)−0.0022 (10)−0.0028 (11)
C200.0303 (13)0.0246 (12)0.0252 (12)0.0038 (10)−0.0053 (10)0.0012 (9)
C220.0356 (14)0.0270 (13)0.0182 (11)−0.0044 (10)0.0003 (10)−0.0001 (9)
C150.0276 (12)0.0202 (11)0.0228 (11)0.0023 (9)−0.0018 (9)0.0005 (9)
C40.0464 (18)0.0324 (15)0.0469 (17)0.0038 (12)−0.0076 (13)−0.0126 (13)
C240.0358 (14)0.0268 (13)0.0231 (12)−0.0106 (10)0.0023 (10)−0.0009 (10)
C210.0374 (15)0.0211 (12)0.0289 (13)−0.0029 (10)0.0038 (11)−0.0007 (10)
O2W0.0576 (15)0.0490 (13)0.0531 (14)−0.0126 (12)−0.0113 (12)0.0219 (11)
C110.0322 (14)0.0238 (12)0.0322 (13)0.0004 (10)−0.0035 (11)0.0015 (10)
C90.0369 (16)0.0559 (19)0.0270 (13)0.0007 (13)−0.0006 (12)0.0105 (13)
C20.0333 (16)0.069 (2)0.0281 (14)0.0083 (14)−0.0010 (11)−0.0159 (14)
C10.0351 (15)0.0514 (18)0.0266 (13)0.0016 (13)0.0000 (11)−0.0016 (12)
C80.0439 (17)0.0444 (18)0.0434 (16)−0.0051 (13)−0.0035 (13)0.0230 (14)
C70.0465 (18)0.0266 (14)0.0497 (17)−0.0016 (12)−0.0031 (14)0.0085 (12)
C30.0481 (19)0.052 (2)0.0463 (17)0.0107 (14)−0.0071 (14)−0.0260 (16)
C100.0334 (14)0.0390 (15)0.0264 (12)0.0019 (11)−0.0015 (11)0.0001 (11)
C60.082 (3)0.0236 (15)0.075 (2)0.0015 (15)−0.007 (2)0.0080 (16)

Geometric parameters (Å, °)

Ni1—O1W2.033 (2)N2—C101.325 (3)
Ni1—O3W2.058 (2)N2—C111.349 (3)
Ni1—O2W2.064 (2)C13—C211.526 (3)
Ni1—N22.076 (2)C13—H130.9800
Ni1—O4W2.076 (2)C19—C201.332 (3)
Ni1—N12.086 (2)C19—H190.9300
O3—C221.275 (3)N1—C11.329 (3)
O8—C241.203 (3)N1—C121.355 (3)
O5—C231.255 (3)O1W—HW110.828 (16)
O6—C231.250 (3)O1W—HW120.859 (17)
O7—C241.315 (3)C16—C241.522 (3)
O7—H70.8200C16—C151.556 (3)
O4—C221.238 (3)C16—H160.9800
O1—C211.305 (3)C12—C41.404 (4)
O1—H10.8200C12—C111.441 (4)
C14—C191.509 (3)C20—H200.9300
C14—C151.545 (3)C15—H150.9800
C14—C131.566 (3)C4—C31.417 (4)
C14—H140.9800O2W—HW210.844 (18)
O4W—HW410.845 (18)O2W—HW220.853 (18)
O4W—HW420.849 (18)C11—C71.408 (4)
C18—C221.530 (3)C9—C81.353 (4)
C18—C171.541 (3)C9—C101.396 (4)
C18—C131.558 (3)C9—H90.9300
C18—H180.9800C2—C31.346 (5)
C23—C151.539 (3)C2—C11.403 (4)
O2—C211.201 (3)C2—H20.9300
C5—C61.355 (6)C1—H1A0.9300
C5—C41.416 (4)C8—C71.401 (4)
C5—H50.9300C8—H80.9300
O3W—HW310.863 (17)C7—C61.430 (4)
O3W—HW320.850 (17)C3—H30.9300
C17—C201.499 (3)C10—H100.9300
C17—C161.544 (3)C6—H60.9300
C17—H170.9800
O1W—Ni1—O3W84.11 (9)Ni1—O1W—HW12124 (2)
O1W—Ni1—O2W90.27 (10)HW11—O1W—HW12105 (2)
O3W—Ni1—O2W90.69 (11)C24—C16—C17112.92 (19)
O1W—Ni1—N292.61 (9)C24—C16—C15115.33 (19)
O3W—Ni1—N293.10 (9)C17—C16—C15109.46 (19)
O2W—Ni1—N2175.45 (10)C24—C16—H16106.1
O1W—Ni1—O4W173.00 (9)C17—C16—H16106.1
O3W—Ni1—O4W90.51 (9)C15—C16—H16106.1
O2W—Ni1—O4W85.31 (10)N1—C12—C4123.9 (2)
N2—Ni1—O4W92.15 (9)N1—C12—C11117.2 (2)
O1W—Ni1—N190.11 (9)C4—C12—C11118.9 (2)
O3W—Ni1—N1171.03 (9)C19—C20—C17114.0 (2)
O2W—Ni1—N196.20 (10)C19—C20—H20123.0
N2—Ni1—N180.28 (9)C17—C20—H20123.0
O4W—Ni1—N195.75 (9)O4—C22—O3123.6 (2)
C24—O7—H7109.5O4—C22—C18119.9 (2)
C21—O1—H1109.5O3—C22—C18116.4 (2)
C19—C14—C15109.06 (19)C23—C15—C14110.8 (2)
C19—C14—C13107.77 (18)C23—C15—C16114.98 (19)
C15—C14—C13108.25 (19)C14—C15—C16108.26 (18)
C19—C14—H14110.6C23—C15—H15107.5
C15—C14—H14110.6C14—C15—H15107.5
C13—C14—H14110.6C16—C15—H15107.5
Ni1—O4W—HW41112 (3)C12—C4—C5120.2 (3)
Ni1—O4W—HW42125 (3)C12—C4—C3116.1 (3)
HW41—O4W—HW42108 (3)C5—C4—C3123.7 (3)
C22—C18—C17112.97 (19)O8—C24—O7124.8 (2)
C22—C18—C13114.05 (19)O8—C24—C16125.3 (2)
C17—C18—C13109.14 (18)O7—C24—C16109.8 (2)
C22—C18—H18106.7O2—C21—O1123.7 (2)
C17—C18—H18106.7O2—C21—C13124.4 (2)
C13—C18—H18106.7O1—C21—C13112.0 (2)
O6—C23—O5124.1 (2)Ni1—O2W—HW21116 (3)
O6—C23—C15119.9 (2)Ni1—O2W—HW22127 (3)
O5—C23—C15115.8 (2)HW21—O2W—HW22105 (2)
C6—C5—C4121.0 (3)N2—C11—C7122.7 (2)
C6—C5—H5119.5N2—C11—C12117.5 (2)
C4—C5—H5119.5C7—C11—C12119.8 (2)
Ni1—O3W—HW31135 (2)C8—C9—C10119.6 (3)
Ni1—O3W—HW32120 (2)C8—C9—H9120.2
HW31—O3W—HW32102 (2)C10—C9—H9120.2
C20—C17—C18109.41 (19)C3—C2—C1120.0 (3)
C20—C17—C16108.71 (18)C3—C2—H2120.0
C18—C17—C16107.02 (18)C1—C2—H2120.0
C20—C17—H17110.5N1—C1—C2122.4 (3)
C18—C17—H17110.5N1—C1—H1A118.8
C16—C17—H17110.5C2—C1—H1A118.8
C10—N2—C11118.6 (2)C9—C8—C7120.0 (3)
C10—N2—Ni1128.91 (18)C9—C8—H8120.0
C11—N2—Ni1112.52 (16)C7—C8—H8120.0
C21—C13—C18114.28 (19)C8—C7—C11116.9 (3)
C21—C13—C14108.5 (2)C8—C7—C6124.0 (3)
C18—C13—C14108.22 (18)C11—C7—C6119.1 (3)
C21—C13—H13108.6C2—C3—C4119.9 (3)
C18—C13—H13108.6C2—C3—H3120.0
C14—C13—H13108.6C4—C3—H3120.0
C20—C19—C14113.9 (2)N2—C10—C9122.3 (3)
C20—C19—H19123.0N2—C10—H10118.9
C14—C19—H19123.0C9—C10—H10118.9
C1—N1—C12117.7 (2)C5—C6—C7121.0 (3)
C1—N1—Ni1130.1 (2)C5—C6—H6119.5
C12—N1—Ni1112.11 (16)C7—C6—H6119.5
Ni1—O1W—HW11125.5 (19)
C22—C18—C17—C2074.5 (2)O6—C23—C15—C1660.0 (3)
C13—C18—C17—C20−53.5 (2)O5—C23—C15—C16−123.0 (2)
C22—C18—C17—C16−167.88 (19)C19—C14—C15—C2372.3 (2)
C13—C18—C17—C1664.1 (2)C13—C14—C15—C23−170.72 (18)
O1W—Ni1—N2—C1094.5 (2)C19—C14—C15—C16−54.7 (2)
O3W—Ni1—N2—C1010.3 (2)C13—C14—C15—C1662.3 (2)
O2W—Ni1—N2—C10−136.3 (11)C24—C16—C15—C233.4 (3)
O4W—Ni1—N2—C10−80.4 (2)C17—C16—C15—C23−125.2 (2)
N1—Ni1—N2—C10−175.8 (2)C24—C16—C15—C14127.9 (2)
O1W—Ni1—N2—C11−84.57 (18)C17—C16—C15—C14−0.7 (3)
O3W—Ni1—N2—C11−168.81 (18)N1—C12—C4—C5179.4 (3)
O2W—Ni1—N2—C1144.7 (12)C11—C12—C4—C5−1.0 (4)
O4W—Ni1—N2—C11100.56 (18)N1—C12—C4—C3−2.1 (4)
N1—Ni1—N2—C115.09 (17)C11—C12—C4—C3177.5 (3)
C22—C18—C13—C21−9.4 (3)C6—C5—C4—C121.6 (6)
C17—C18—C13—C21118.0 (2)C6—C5—C4—C3−176.8 (4)
C22—C18—C13—C14−130.4 (2)C17—C16—C24—O82.3 (4)
C17—C18—C13—C14−3.0 (3)C15—C16—C24—O8−124.5 (3)
C19—C14—C13—C21−67.1 (2)C17—C16—C24—O7−173.9 (2)
C15—C14—C13—C21175.12 (19)C15—C16—C24—O759.2 (3)
C19—C14—C13—C1857.4 (2)C18—C13—C21—O2−42.5 (4)
C15—C14—C13—C18−60.4 (2)C14—C13—C21—O278.3 (3)
C15—C14—C19—C2058.8 (3)C18—C13—C21—O1137.8 (2)
C13—C14—C19—C20−58.5 (3)C14—C13—C21—O1−101.3 (2)
O1W—Ni1—N1—C1−89.4 (2)C10—N2—C11—C7−2.6 (4)
O3W—Ni1—N1—C1−139.2 (5)Ni1—N2—C11—C7176.5 (2)
O2W—Ni1—N1—C10.8 (3)C10—N2—C11—C12176.5 (2)
N2—Ni1—N1—C1177.9 (3)Ni1—N2—C11—C12−4.4 (3)
O4W—Ni1—N1—C186.7 (2)N1—C12—C11—N2−0.1 (4)
O1W—Ni1—N1—C1287.52 (18)C4—C12—C11—N2−179.7 (2)
O3W—Ni1—N1—C1237.8 (6)N1—C12—C11—C7179.1 (2)
O2W—Ni1—N1—C12177.81 (18)C4—C12—C11—C7−0.6 (4)
N2—Ni1—N1—C12−5.11 (16)C12—N1—C1—C2−0.6 (4)
O4W—Ni1—N1—C12−96.31 (18)Ni1—N1—C1—C2176.2 (2)
C20—C17—C16—C24−74.2 (2)C3—C2—C1—N10.6 (4)
C18—C17—C16—C24167.72 (19)C10—C9—C8—C7−0.1 (5)
C20—C17—C16—C1555.7 (2)C9—C8—C7—C11−1.3 (5)
C18—C17—C16—C15−62.3 (2)C9—C8—C7—C6−179.1 (3)
C1—N1—C12—C41.4 (4)N2—C11—C7—C82.7 (4)
Ni1—N1—C12—C4−175.9 (2)C12—C11—C7—C8−176.4 (3)
C1—N1—C12—C11−178.2 (2)N2—C11—C7—C6−179.3 (3)
Ni1—N1—C12—C114.4 (3)C12—C11—C7—C61.6 (4)
C14—C19—C20—C17−0.5 (3)C1—C2—C3—C4−1.3 (5)
C18—C17—C20—C1958.8 (3)C12—C4—C3—C22.0 (5)
C16—C17—C20—C19−57.7 (3)C5—C4—C3—C2−179.6 (3)
C17—C18—C22—O4−7.5 (3)C11—N2—C10—C91.1 (4)
C13—C18—C22—O4117.9 (3)Ni1—N2—C10—C9−177.9 (2)
C17—C18—C22—O3168.6 (2)C8—C9—C10—N20.2 (4)
C13—C18—C22—O3−66.0 (3)C4—C5—C6—C7−0.6 (6)
O6—C23—C15—C14−63.2 (3)C8—C7—C6—C5176.8 (4)
O5—C23—C15—C14113.8 (2)C11—C7—C6—C5−1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7···O3i0.821.832.576 (3)151
O1—H1···O6ii0.821.882.670 (3)163
O1W—HW11···O40.83 (2)1.90 (2)2.716 (3)170 (3)
O1W—HW12···O5iii0.86 (2)1.83 (2)2.682 (3)173 (3)
O4W—HW41···O5iv0.85 (2)2.07 (3)2.879 (3)161 (4)
O4W—HW42···O3v0.85 (2)2.16 (2)2.926 (3)150 (4)
O3W—HW31···O3vi0.86 (2)1.96 (2)2.814 (3)171 (3)
O3W—HW32···O6iii0.85 (2)2.06 (2)2.893 (3)166 (4)
O2W—HW21···O3v0.84 (2)2.47 (2)3.244 (4)153 (4)
O2W—HW22···O20.85 (2)2.01 (2)2.806 (3)154 (4)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x−1, −y+1/2, z−1/2; (v) x−1, y, z; (vi) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2585).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Y.-Y., Zhuo, Y.-J., Li, X.-Q. & Ma, J.-C. (2008). Acta Cryst. E64, m1590. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography