PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m887.
Published online 2009 July 8. doi:  10.1107/S1600536809025446
PMCID: PMC2977446

Tetra­kis(2-amino-6-methyl­pyridinium) hexa­chloridobismuthate(III) chloride monohydrate

Abstract

The asymmetric unit of the title compound, (C6H9N2)4[BiCl6]Cl·H2O, contains four protonated 2-amino-6-methyl­pyridine (HAMP) cations and two-halves of two [BiCl6]3− anions, together with one water mol­ecule and one chloride anion. The BiIII atoms are hexa­coordinated by Cl atoms, forming distorted octa­hedral geometries. In the crystal structure, intra­molecular O—H(...)Cl and N—H(...)Cl, and inter­molecular O—H(...)Cl and N—H(...)O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Albrecht et al. (2003 [triangle]); Feng et al. (2007 [triangle]); Inuzuka & Fujimoto (1986 [triangle], 1990 [triangle]); Ishikawa et al. (2002 [triangle]); Jin et al. (2000 [triangle], 2001 [triangle], 2005 [triangle]); Luque et al. (1997 [triangle]); Nahringbauer & Kvick (1977 [triangle]); Ren et al. (2002 [triangle]); Rivas et al. (2003 [triangle]); Salwa et al. (2008 [triangle]); Xu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m887-scheme1.jpg

Experimental

Crystal data

  • (C6H9N2)4[BiCl6]Cl·H2O
  • M r = 911.75
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m887-efi1.jpg
  • a = 10.3345 (7) Å
  • b = 10.7605 (7) Å
  • c = 17.2673 (11) Å
  • α = 100.3370 (10)°
  • β = 103.7370 (10)°
  • γ = 99.2280 (10)°
  • V = 1793.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.47 mm−1
  • T = 273 K
  • 0.42 × 0.31 × 0.25 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.153, T max = 0.185 (expected range = 0.211–0.255)
  • 9489 measured reflections
  • 6240 independent reflections
  • 5171 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.070
  • S = 1.07
  • 6240 reflections
  • 373 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −1.13 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025446/hk2720sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025446/hk2720Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

During the past decade, a series of 2-amino-substituted pyridine compounds have been investigated in which the 2-aminopyridines act as ligands or protonated cations (Ren et al., 2002; Rivas et al., 2003; Luque et al., 1997; Albrecht et al., 2003). Among them, the tautomerism phenomenon of 2-aminopyridine derivatives has been proved by x-ray diffraction, such as 2-amino-6-methylpyridinium chloride (Jin et al., 2000) and 2-amino-6-methylpyridinium neoabietate (Jin et al., 2005). All the above studies provide important references to further research into 2-amino pyridines. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains four protonated 2-amino-6-methyl-pyridine (HAMP) cations and two-halves of crystallographically independent [BiCl6]3- anions, together with one water molecule and one chloride anion. The bismuth atoms are hexa-coordinated by chloride atoms, forming distorted-octahedral geometries. Intramolecular O-H···Cl and N-H···Cl interactions (Table 1) link the cations, anions and water molecule.

The average value of Bi—Cl bond distance [2.7061 Å] observed in the [BiCl6]3- anion is shorter than the corresponding average values of [2.7130 Å] (Salwa et al., 2008) and [2.7150 Å] (Xu et al., 2006). In the cation, the N4—C11 bond [1.334 (5) Å] is shorter than the N3—C11 [1.341 (5) Å] and N3—C7 [1.358 (5) Å] bonds, and the C10—C11 [1.384 (6) Å] and C8—C9 [1.402 (6) Å] bonds are significantly longer than C9—C10 [1.362 (7) Å] and C7—C8 [1.342 (6) Å] bonds, in which they are similar to those in the HAMP cation (C6H9N2)2[Sb2Cl6O] (Feng et al., 2007). In contrast, in the solid state structure of 2-amino-6-methyl-pyridine (AMP), the N—C bond out of the ring is clearly longer than that in the ring (Nahringbauer et al., 1977). The geometric features of HAMP cation [N7/N8/C19/C24] resemble those observed in other 2-aminopyridine structures (Jin et al., 2001) that are believed to be involved in amine-imine tautomerism (Inuzuka et al., 1986; Inuzuka et al., 1990; Ishikawa et al., 2002). Similar features are also observed in other HAMP cations.

In the crystal structure (Fig. 2), intramolecular O-H···Cl and N-H···Cl and intermolecular O-H···Cl and N-H···O interactions (Table 1) link the molecules into a three-dimensional network.

Experimental

For the preparation of the title compound, AMP, aqueous HCl and BiCl3 in a molar ratio of 4:4:1 were mixed and dissolved in water (20 ml). The mixture was stirred and heated until a clear solution was resulted. Crystals suitable for X-ray analysis were obtained by gradual evaporation of excess water over a period of one week at 300 K. Analysis: C 31.65; H 4.13; N 12.32. calc. for Bi1C24H34N8O1Cl7: C 31.61; H 4.17; N 12.29 IR Spectrum (KBr, cm-1): 3411(s), 3295 (s), 3195 (m), 3090 (m), 1656 (versus), 1630 (w), 1565 (w), 1474 (w), 1392 (m), 1309 (m), 1174 (w), 1042 (w), 997 (w), 793 (m), 715 (w), 612 (w), 564 (w), 421 (m).

Refinement

H atoms were positioned geometrically with O-H = 0.8249 and 0.8278 Å (for H2O), N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A packing diagram viewed down along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

(C6H9N2)4[BiCl6]Cl·H2OZ = 2
Mr = 911.75F(000) = 896.0
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3345 (7) ÅCell parameters from 3117 reflections
b = 10.7605 (7) Åθ = 2.2–25.1°
c = 17.2673 (11) ŵ = 5.47 mm1
α = 100.337 (1)°T = 273 K
β = 103.737 (1)°Block, colorless
γ = 99.228 (1)°0.42 × 0.31 × 0.25 mm
V = 1793.1 (2) Å3

Data collection

Bruker SMART APEX area-detector diffractometer6240 independent reflections
Radiation source: fine-focus sealed tube5171 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→12
Tmin = 0.153, Tmax = 0.185k = −9→12
9489 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5382P] where P = (Fo2 + 2Fc2)/3
6240 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = −1.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Bi10.50000.50000.50000.03208 (7)
Bi20.50000.50000.00000.03407 (7)
Cl10.76385 (11)0.55587 (11)0.49688 (6)0.0503 (3)
Cl20.46967 (13)0.73844 (10)0.48394 (7)0.0537 (3)
Cl30.42723 (11)0.42048 (10)0.33422 (6)0.0489 (3)
Cl40.56519 (12)0.32481 (10)0.08902 (7)0.0573 (3)
Cl50.33494 (12)0.56458 (11)0.09478 (7)0.0547 (3)
Cl60.70316 (12)0.68084 (10)0.10950 (7)0.0599 (3)
Cl70.88297 (16)0.15531 (15)0.23702 (9)0.0826 (4)
O11.1851 (4)0.1659 (3)0.3096 (2)0.0857 (11)
H1WB1.11290.18120.28490.103*
H1WA1.24970.22920.32650.103*
N10.1776 (4)0.0607 (4)0.1493 (3)0.0592 (11)
H10.17670.09270.19850.071*
N20.2421 (5)0.2693 (4)0.1378 (3)0.0810 (13)
H2A0.24250.29630.18780.097*
H2B0.26290.32380.10950.097*
N30.5100 (4)0.8575 (3)0.20673 (19)0.0474 (9)
H3A0.51450.79110.17220.057*
N40.4851 (5)0.7216 (4)0.2933 (2)0.0781 (14)
H4A0.49000.65880.25630.094*
H4B0.47470.70790.33920.094*
N50.8447 (4)0.0458 (4)0.3837 (3)0.0502 (9)
H50.86070.06690.34070.060*
N60.8249 (5)0.2543 (4)0.4248 (3)0.0840 (14)
H6D0.84030.26840.38000.101*
H6E0.81120.31550.45930.101*
N70.8615 (3)0.4698 (3)0.2053 (2)0.0421 (8)
H70.78610.44460.16720.050*
N80.7323 (4)0.4673 (4)0.2964 (2)0.0664 (11)
H8A0.66040.44260.25560.080*
H8B0.72510.47840.34560.080*
C10.2094 (5)0.1432 (6)0.1040 (3)0.0618 (13)
C20.2063 (7)0.0900 (8)0.0237 (4)0.094 (2)
H20.22860.1435−0.01000.112*
C30.1711 (9)−0.0385 (10)−0.0048 (5)0.124 (3)
H30.1641−0.0735−0.05930.149*
C40.1446 (9)−0.1207 (8)0.0466 (6)0.130 (3)
H40.1259−0.20990.02740.156*
C50.1466 (6)−0.0699 (6)0.1232 (4)0.0808 (17)
C60.1129 (8)−0.1460 (6)0.1820 (5)0.126 (3)
H6A0.1219−0.08850.23330.189*
H6B0.1741−0.20380.19020.189*
H6C0.0209−0.19510.16060.189*
C70.4938 (5)0.8408 (4)0.2794 (2)0.0474 (10)
C80.4871 (5)0.9476 (5)0.3355 (3)0.0513 (11)
H80.47660.93980.38660.062*
C90.4962 (5)1.0642 (5)0.3144 (3)0.0547 (12)
H90.49141.13660.35130.066*
C100.5125 (5)1.0763 (4)0.2382 (3)0.0510 (11)
H100.51851.15650.22470.061*
C110.5198 (5)0.9730 (4)0.1841 (3)0.0452 (10)
C120.5398 (6)0.9723 (5)0.1016 (3)0.0676 (14)
H12A0.54100.88620.07530.101*
H12B0.62481.02900.10690.101*
H12C0.46651.00140.06920.101*
C130.8223 (5)0.1368 (5)0.4407 (3)0.0536 (12)
C140.7972 (6)0.1029 (6)0.5099 (3)0.0726 (16)
H140.78200.16380.55040.087*
C150.7949 (6)−0.0189 (8)0.5181 (4)0.086 (2)
H150.7779−0.04170.56470.103*
C160.8170 (6)−0.1111 (6)0.4591 (5)0.084 (2)
H160.8141−0.19540.46550.101*
C170.8431 (5)−0.0771 (5)0.3914 (4)0.0673 (15)
C180.8685 (7)−0.1648 (6)0.3227 (4)0.110 (3)
H18A0.8842−0.11790.28230.166*
H18B0.7906−0.23470.29840.166*
H18C0.9471−0.19880.34270.166*
C190.8552 (4)0.4883 (4)0.2832 (2)0.0434 (10)
C200.9768 (5)0.5280 (4)0.3444 (3)0.0513 (11)
H200.97650.54240.39910.062*
C211.0970 (5)0.5458 (5)0.3242 (3)0.0513 (11)
H211.17900.57070.36530.062*
C221.0979 (5)0.5268 (4)0.2419 (3)0.0482 (11)
H221.18000.54080.22820.058*
C230.9793 (4)0.4882 (4)0.1830 (3)0.0428 (10)
C240.9655 (5)0.4629 (6)0.0929 (3)0.0738 (15)
H24A0.87070.43640.06330.111*
H24B1.01210.39570.07830.111*
H24C1.00480.54030.07930.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Bi10.03694 (12)0.03611 (12)0.02651 (11)0.00931 (9)0.01195 (8)0.00979 (8)
Bi20.03917 (13)0.03067 (12)0.02879 (11)0.00442 (9)0.00502 (9)0.00606 (8)
Cl10.0429 (6)0.0620 (7)0.0507 (6)0.0078 (5)0.0165 (5)0.0224 (5)
Cl20.0791 (8)0.0442 (6)0.0486 (6)0.0211 (5)0.0280 (6)0.0170 (5)
Cl30.0524 (6)0.0586 (7)0.0340 (5)0.0077 (5)0.0125 (5)0.0090 (4)
Cl40.0568 (7)0.0446 (6)0.0610 (7)0.0003 (5)−0.0039 (5)0.0237 (5)
Cl50.0553 (7)0.0571 (7)0.0534 (6)0.0082 (5)0.0265 (5)0.0047 (5)
Cl60.0538 (7)0.0436 (6)0.0631 (7)0.0017 (5)−0.0073 (5)0.0026 (5)
Cl70.0804 (10)0.0984 (11)0.0720 (9)0.0159 (8)0.0196 (8)0.0314 (8)
O10.075 (3)0.089 (3)0.078 (2)−0.007 (2)0.016 (2)0.009 (2)
N10.054 (2)0.054 (3)0.070 (3)0.0043 (19)0.021 (2)0.014 (2)
N20.101 (4)0.066 (3)0.091 (3)0.015 (3)0.046 (3)0.033 (3)
N30.077 (3)0.0354 (19)0.0299 (17)0.0145 (18)0.0157 (17)0.0055 (14)
N40.133 (4)0.054 (3)0.047 (2)0.009 (3)0.024 (2)0.022 (2)
N50.050 (2)0.041 (2)0.058 (2)0.0123 (17)0.0093 (19)0.0108 (18)
N60.113 (4)0.050 (3)0.098 (4)0.029 (3)0.040 (3)0.015 (2)
N70.0369 (19)0.053 (2)0.0365 (18)0.0087 (16)0.0089 (15)0.0119 (16)
N80.052 (2)0.096 (3)0.058 (2)0.011 (2)0.027 (2)0.021 (2)
C10.047 (3)0.073 (4)0.071 (3)0.008 (2)0.025 (3)0.021 (3)
C20.082 (5)0.130 (7)0.071 (4)0.004 (4)0.037 (4)0.023 (4)
C30.112 (6)0.144 (8)0.083 (5)−0.019 (6)0.043 (5)−0.037 (5)
C40.146 (8)0.089 (6)0.125 (7)−0.025 (5)0.059 (6)−0.035 (5)
C50.072 (4)0.059 (4)0.101 (5)−0.003 (3)0.021 (3)0.013 (3)
C60.143 (7)0.078 (5)0.148 (7)−0.016 (4)0.036 (6)0.046 (5)
C70.056 (3)0.047 (3)0.039 (2)0.006 (2)0.013 (2)0.0141 (19)
C80.056 (3)0.067 (3)0.031 (2)0.013 (2)0.015 (2)0.007 (2)
C90.057 (3)0.051 (3)0.052 (3)0.020 (2)0.015 (2)−0.004 (2)
C100.065 (3)0.040 (3)0.048 (3)0.015 (2)0.013 (2)0.008 (2)
C110.052 (3)0.041 (2)0.045 (2)0.012 (2)0.014 (2)0.014 (2)
C120.106 (4)0.063 (3)0.047 (3)0.025 (3)0.035 (3)0.023 (2)
C130.048 (3)0.048 (3)0.059 (3)0.011 (2)0.008 (2)0.006 (2)
C140.058 (3)0.099 (5)0.059 (3)0.018 (3)0.014 (3)0.015 (3)
C150.060 (4)0.117 (6)0.086 (5)0.010 (4)0.013 (3)0.056 (4)
C160.062 (4)0.055 (4)0.132 (6)0.007 (3)0.006 (4)0.047 (4)
C170.055 (3)0.043 (3)0.097 (4)0.008 (2)0.009 (3)0.016 (3)
C180.131 (6)0.067 (4)0.119 (5)0.042 (4)0.024 (5)−0.020 (4)
C190.046 (2)0.046 (2)0.044 (2)0.0137 (19)0.017 (2)0.0166 (19)
C200.056 (3)0.062 (3)0.035 (2)0.012 (2)0.008 (2)0.015 (2)
C210.042 (3)0.062 (3)0.047 (3)0.011 (2)0.003 (2)0.019 (2)
C220.039 (2)0.062 (3)0.047 (3)0.014 (2)0.014 (2)0.016 (2)
C230.041 (2)0.051 (3)0.042 (2)0.0134 (19)0.0153 (19)0.0137 (19)
C240.064 (3)0.112 (5)0.040 (3)0.009 (3)0.017 (2)0.009 (3)

Geometric parameters (Å, °)

Bi1—Cl1i2.7121 (11)C3—C41.401 (12)
Bi1—Cl12.7121 (11)C3—H30.9300
Bi1—Cl22.6888 (10)C4—C51.331 (10)
Bi1—Cl2i2.6888 (10)C4—H40.9300
Bi1—Cl3i2.7175 (10)C5—C61.484 (9)
Bi1—Cl32.7175 (10)C6—H6A0.9600
Bi2—Cl42.7066 (10)C6—H6B0.9600
Bi2—Cl52.7146 (10)C6—H6C0.9600
Bi2—Cl5ii2.7146 (10)C7—C81.386 (6)
Bi2—Cl6ii2.6932 (10)C8—C91.364 (7)
Bi2—Cl62.6932 (11)C8—H80.9300
Bi2—Cl4ii2.7066 (10)C9—C101.390 (7)
O1—H1WA0.8278C9—H90.9300
O1—H1WB0.8249C10—C111.342 (6)
N1—C11.336 (6)C10—H100.9300
N1—C51.357 (7)C11—C121.487 (6)
N1—H10.8600C12—H12A0.9600
N2—C11.331 (6)C12—H12B0.9600
N2—H2A0.8600C12—H12C0.9600
N2—H2B0.8600C13—C141.379 (8)
N3—C71.344 (5)C14—C151.340 (9)
N3—C111.363 (5)C14—H140.9300
N3—H3A0.8600C15—C161.376 (10)
N4—C71.340 (5)C15—H150.9300
N4—H4A0.8600C16—C171.358 (9)
N4—H4B0.8600C16—H160.9300
N5—C131.348 (6)C17—C181.481 (8)
N5—C171.350 (6)C18—H18A0.9600
N5—H50.8600C18—H18B0.9600
N6—C131.338 (6)C18—H18C0.9600
N6—H6D0.8600C19—C201.384 (6)
N6—H6E0.8600C20—C211.362 (7)
N7—C191.341 (5)C20—H200.9300
N7—C231.358 (5)C21—C221.402 (6)
N7—H70.8600C21—H210.9300
N8—C191.334 (5)C22—C231.342 (6)
N8—H8A0.8600C22—H220.9300
N8—H8B0.8600C23—C241.498 (6)
C1—C21.392 (8)C24—H24A0.9600
C2—C31.340 (11)C24—H24B0.9600
C2—H20.9300C24—H24C0.9600
Cl2—Bi1—Cl2i180.0C5—C6—H6A109.5
Cl2—Bi1—Cl1i88.75 (3)C5—C6—H6B109.5
Cl2i—Bi1—Cl1i91.25 (3)H6A—C6—H6B109.5
Cl2—Bi1—Cl191.25 (3)C5—C6—H6C109.5
Cl2i—Bi1—Cl188.75 (3)H6A—C6—H6C109.5
Cl1i—Bi1—Cl1180.0H6B—C6—H6C109.5
Cl2—Bi1—Cl3i90.89 (3)N4—C7—N3117.9 (4)
Cl2i—Bi1—Cl3i89.11 (3)N4—C7—C8123.9 (4)
Cl1i—Bi1—Cl3i88.60 (3)N3—C7—C8118.2 (4)
Cl1—Bi1—Cl3i91.40 (3)C9—C8—C7118.7 (4)
Cl2—Bi1—Cl389.11 (3)C9—C8—H8120.6
Cl2i—Bi1—Cl390.89 (3)C7—C8—H8120.6
Cl1i—Bi1—Cl391.40 (3)C8—C9—C10120.8 (4)
Cl1—Bi1—Cl388.60 (3)C8—C9—H9119.6
Cl3i—Bi1—Cl3180.0C10—C9—H9119.6
Cl6ii—Bi2—Cl6180.00 (5)C11—C10—C9120.5 (4)
Cl6ii—Bi2—Cl4ii89.13 (3)C11—C10—H10119.8
Cl6—Bi2—Cl4ii90.87 (3)C9—C10—H10119.8
Cl6ii—Bi2—Cl490.87 (3)C10—C11—N3117.5 (4)
Cl6—Bi2—Cl489.13 (3)C10—C11—C12126.2 (4)
Cl4ii—Bi2—Cl4180.00 (3)N3—C11—C12116.3 (4)
Cl6ii—Bi2—Cl592.40 (4)C11—C12—H12A109.5
Cl6—Bi2—Cl587.60 (4)C11—C12—H12B109.5
Cl4ii—Bi2—Cl591.47 (4)H12A—C12—H12B109.5
Cl4—Bi2—Cl588.53 (4)C11—C12—H12C109.5
Cl6ii—Bi2—Cl5ii87.60 (4)H12A—C12—H12C109.5
Cl6—Bi2—Cl5ii92.40 (4)H12B—C12—H12C109.5
Cl4ii—Bi2—Cl5ii88.53 (4)N6—C13—N5116.6 (5)
Cl4—Bi2—Cl5ii91.47 (4)N6—C13—C14125.0 (5)
Cl5—Bi2—Cl5ii180.00 (3)N5—C13—C14118.5 (5)
H1WB—O1—H1WA114.5C15—C14—C13119.2 (6)
C1—N1—C5124.6 (5)C15—C14—H14120.4
C1—N1—H1117.7C13—C14—H14120.4
C5—N1—H1117.7C14—C15—C16121.6 (6)
C1—N2—H2A120.0C14—C15—H15119.2
C1—N2—H2B120.0C16—C15—H15119.2
H2A—N2—H2B120.0C17—C16—C15119.0 (6)
C7—N3—C11124.3 (4)C17—C16—H16120.5
C7—N3—H3A117.9C15—C16—H16120.5
C11—N3—H3A117.9N5—C17—C16118.8 (6)
C7—N4—H4A120.0N5—C17—C18115.7 (6)
C7—N4—H4B120.0C16—C17—C18125.4 (6)
H4A—N4—H4B120.0C17—C18—H18A109.5
C13—N5—C17122.8 (5)C17—C18—H18B109.5
C13—N5—H5118.6H18A—C18—H18B109.5
C17—N5—H5118.6C17—C18—H18C109.5
C13—N6—H6D120.0H18A—C18—H18C109.5
C13—N6—H6E120.0H18B—C18—H18C109.5
H6D—N6—H6E120.0N8—C19—N7117.9 (4)
C19—N7—C23124.2 (4)N8—C19—C20124.4 (4)
C19—N7—H7117.9N7—C19—C20117.7 (4)
C23—N7—H7117.9C21—C20—C19119.7 (4)
C19—N8—H8A120.0C21—C20—H20120.1
C19—N8—H8B120.0C19—C20—H20120.1
H8A—N8—H8B120.0C20—C21—C22120.3 (4)
N2—C1—N1118.7 (5)C20—C21—H21119.8
N2—C1—C2124.3 (6)C22—C21—H21119.8
N1—C1—C2117.0 (6)C23—C22—C21119.5 (4)
C3—C2—C1119.8 (7)C23—C22—H22120.3
C3—C2—H2120.1C21—C22—H22120.3
C1—C2—H2120.1C22—C23—N7118.6 (4)
C2—C3—C4120.8 (7)C22—C23—C24125.0 (4)
C2—C3—H3119.6N7—C23—C24116.3 (4)
C4—C3—H3119.6C23—C24—H24A109.5
C5—C4—C3119.4 (7)C23—C24—H24B109.5
C5—C4—H4120.3H24A—C24—H24B109.5
C3—C4—H4120.3C23—C24—H24C109.5
C4—C5—N1118.3 (7)H24A—C24—H24C109.5
C4—C5—C6124.6 (7)H24B—C24—H24C109.5
N1—C5—C6117.0 (6)
C5—N1—C1—N2−177.8 (5)C17—N5—C13—N6−179.1 (5)
C5—N1—C1—C21.9 (8)C17—N5—C13—C140.3 (7)
N2—C1—C2—C3−179.6 (7)N6—C13—C14—C15178.8 (5)
N1—C1—C2—C30.7 (10)N5—C13—C14—C15−0.5 (8)
C1—C2—C3—C4−3.6 (13)C13—C14—C15—C160.0 (9)
C2—C3—C4—C54.1 (14)C14—C15—C16—C170.7 (10)
C3—C4—C5—N1−1.6 (12)C13—N5—C17—C160.4 (8)
C3—C4—C5—C6176.5 (8)C13—N5—C17—C18179.4 (5)
C1—N1—C5—C4−1.4 (10)C15—C16—C17—N5−0.9 (9)
C1—N1—C5—C6−179.6 (6)C15—C16—C17—C18−179.8 (6)
C11—N3—C7—N4179.8 (4)C23—N7—C19—N8179.6 (4)
C11—N3—C7—C8−0.3 (7)C23—N7—C19—C20−0.4 (6)
N4—C7—C8—C9−179.6 (5)N8—C19—C20—C21179.5 (4)
N3—C7—C8—C90.5 (7)N7—C19—C20—C21−0.4 (7)
C7—C8—C9—C10−0.3 (7)C19—C20—C21—C221.3 (7)
C8—C9—C10—C110.0 (7)C20—C21—C22—C23−1.4 (7)
C9—C10—C11—N30.2 (6)C21—C22—C23—N70.5 (6)
C9—C10—C11—C12−178.7 (5)C21—C22—C23—C24−179.3 (5)
C7—N3—C11—C100.0 (7)C19—N7—C23—C220.4 (6)
C7—N3—C11—C12179.0 (4)C19—N7—C23—C24−179.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1WB···Cl70.832.283.051 (3)157
N2—H2B···Cl50.862.653.432 (3)151
N4—H4B···Cl20.862.483.307 (3)163
N5—H5···Cl70.862.213.059 (3)168
N7—H7···Cl40.862.383.204 (3)161
N8—H8B···Cl10.862.513.343 (3)164
O1—H1WA···Cl3iii0.832.493.290 (3)163
N1—H1···O1iv0.861.912.774 (3)177

Symmetry codes: (iii) x+1, y, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2720).

References

  • Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.
  • Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta Part A, 42, 929–937.
  • Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975.
  • Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.
  • Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr.31, 191–195.
  • Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr.30, 195–198.
  • Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. [PubMed]
  • Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  • Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  • Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem.33, 38–41.
  • Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.
  • Salwa, N., Fatma, Z. & Hafed, E. F. (2008). J. Chem. Crystallogr.38, 729–732.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, G., Fu, M. L., Cai, L. Z., Zhang, Z. J., Guo, G. C. & Huang, J. S. (2006). Chin. J. Struct. Chem.25, 338–342.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography