PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2054.
Published online 2009 July 31. doi:  10.1107/S1600536809029821
PMCID: PMC2977445

(Z)-1-(2,4-Difluoro­phen­yl)-3-phenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

Abstract

In the title mol­ecule, C17H11F2N3O, the triazole ring makes dihedral angles of 83.00 (5) and 16.63 (5)°, respectively, with the phenyl and benzene rings. Weak inter­molecular C—H(...)F and C—H(...)N inter­actions contribute to the crystal packing.

Related literature

For details of the synthesis, see: Wang et al. (2009 [triangle]). For the pharmacological activity of chalcones, see: Reichwald et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2054-scheme1.jpg

Experimental

Crystal data

  • C17H11F2N3O
  • M r = 311.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2054-efi1.jpg
  • a = 11.7595 (16) Å
  • b = 7.5800 (10) Å
  • c = 17.068 (2) Å
  • β = 108.067 (2)°
  • V = 1446.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.25 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.973, T max = 0.985
  • 10616 measured reflections
  • 2681 independent reflections
  • 1940 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.101
  • S = 1.02
  • 2681 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT-Plus (Bruker, 1997 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029821/cv2596sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029821/cv2596Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Southwest University (grant Nos. SWUB2006018 & XSGX0602) and Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

supplementary crystallographic information

Comment

Chalcones, considered as the precursors of flavonoids and isoflavonoids, are abundant in edible plants. Chalcones exhibit a variety of beneficial pharmacological activities such as antitumor, antibacterial, antifungal, antiinflammatory, antimalarial, antivirus and so on (Reichwald et al., 2008). In view of the therapeutic potentials of chalcones, we synthesized the title compound (I). Herewith we report its crystal structure.

In (I) (Fig. 1), the triazole ring makes the dihedral angles of 83.00 (5)° and 16.63 (5)°, respectively, with the phenyl and benzene rings. Weak intermolecular C—H···F and C—H···N interactions (Table 1) contribute to the crystal packing stability.

Experimental

Compound (I) was synthesized according to the procedure of Wang et al. (2009). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement

All the hydrogen atoms were placed at the geometrical positions with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H11F2N3OF(000) = 640
Mr = 311.29Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7595 (16) ÅCell parameters from 2124 reflections
b = 7.580 (1) Åθ = 2.5–23.7°
c = 17.068 (2) ŵ = 0.11 mm1
β = 108.067 (2)°T = 296 K
V = 1446.4 (3) Å3Block, colourless
Z = 40.25 × 0.21 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer2681 independent reflections
Radiation source: fine-focus sealed tube1940 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −14→14
Tmin = 0.973, Tmax = 0.985k = −9→9
10616 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2887P] where P = (Fo2 + 2Fc2)/3
2681 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.37404 (14)0.4189 (2)0.17104 (10)0.0410 (4)
C20.32338 (16)0.3486 (2)0.22725 (10)0.0485 (5)
C30.20317 (17)0.3192 (3)0.20996 (12)0.0563 (5)
H30.17180.26960.24860.068*
C40.13143 (16)0.3665 (3)0.13310 (13)0.0540 (5)
C50.17475 (16)0.4363 (3)0.07450 (12)0.0554 (5)
H50.12360.46660.02280.066*
C60.29653 (15)0.4609 (2)0.09396 (11)0.0463 (4)
H60.32750.50680.05430.056*
C70.50387 (15)0.4647 (2)0.19524 (10)0.0455 (4)
C80.57636 (13)0.4110 (2)0.14180 (9)0.0380 (4)
C90.54142 (14)0.2954 (2)0.07984 (10)0.0394 (4)
H90.46160.26130.06580.047*
C100.60984 (14)0.2144 (2)0.03078 (10)0.0371 (4)
C110.54836 (15)0.1629 (2)−0.04971 (10)0.0427 (4)
H110.46640.1823−0.07070.051*
C120.60760 (17)0.0835 (2)−0.09852 (11)0.0511 (5)
H120.56610.0534−0.15270.061*
C130.72778 (18)0.0488 (3)−0.06717 (12)0.0574 (5)
H130.7677−0.0051−0.10000.069*
C140.78932 (17)0.0939 (3)0.01321 (13)0.0571 (5)
H140.87030.06770.03470.068*
C150.73151 (15)0.1777 (2)0.06192 (11)0.0472 (4)
H150.77400.20960.11560.057*
C160.78369 (16)0.4806 (3)0.23361 (11)0.0540 (5)
H160.78190.41820.28010.065*
C170.83462 (16)0.6374 (3)0.15148 (11)0.0531 (5)
H170.88100.71010.12970.064*
F10.39533 (10)0.30437 (19)0.30320 (7)0.0792 (4)
F20.01212 (10)0.3410 (2)0.11449 (8)0.0874 (4)
N10.69278 (12)0.48896 (18)0.16383 (8)0.0401 (3)
N20.72498 (12)0.5930 (2)0.10902 (9)0.0479 (4)
N30.87605 (13)0.5715 (2)0.22846 (10)0.0589 (4)
O10.55016 (12)0.5454 (2)0.25844 (8)0.0737 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0413 (9)0.0420 (10)0.0427 (9)0.0005 (7)0.0173 (8)−0.0015 (8)
C20.0525 (11)0.0558 (11)0.0415 (10)0.0108 (9)0.0209 (9)0.0054 (9)
C30.0586 (12)0.0590 (12)0.0646 (13)0.0022 (9)0.0386 (10)0.0056 (10)
C40.0387 (10)0.0577 (12)0.0700 (13)−0.0016 (9)0.0232 (9)−0.0048 (10)
C50.0458 (11)0.0632 (13)0.0541 (11)0.0015 (9)0.0110 (9)0.0039 (10)
C60.0463 (10)0.0495 (11)0.0461 (10)−0.0032 (8)0.0187 (8)0.0062 (8)
C70.0456 (10)0.0500 (11)0.0404 (9)−0.0005 (8)0.0128 (8)−0.0037 (8)
C80.0351 (9)0.0424 (9)0.0352 (9)−0.0025 (7)0.0092 (7)0.0018 (8)
C90.0360 (9)0.0425 (10)0.0397 (9)−0.0043 (7)0.0119 (7)0.0036 (8)
C100.0390 (9)0.0339 (9)0.0392 (9)−0.0049 (7)0.0133 (7)0.0017 (7)
C110.0425 (9)0.0406 (10)0.0432 (9)−0.0066 (8)0.0107 (8)−0.0015 (8)
C120.0644 (12)0.0473 (11)0.0429 (10)−0.0099 (9)0.0188 (9)−0.0077 (8)
C130.0660 (14)0.0501 (12)0.0645 (13)−0.0019 (9)0.0324 (11)−0.0123 (10)
C140.0443 (10)0.0554 (12)0.0722 (13)0.0062 (9)0.0192 (10)−0.0041 (11)
C150.0454 (10)0.0488 (11)0.0443 (10)−0.0006 (8)0.0094 (8)−0.0027 (8)
C160.0474 (11)0.0662 (13)0.0409 (10)−0.0057 (9)0.0030 (8)−0.0005 (9)
C170.0427 (10)0.0596 (12)0.0579 (12)−0.0127 (9)0.0170 (9)−0.0074 (10)
F10.0713 (8)0.1213 (11)0.0491 (7)0.0211 (7)0.0247 (6)0.0255 (7)
F20.0441 (7)0.1161 (11)0.1074 (10)−0.0115 (7)0.0313 (7)−0.0038 (9)
N10.0364 (8)0.0457 (8)0.0359 (7)−0.0048 (6)0.0079 (6)−0.0025 (6)
N20.0423 (8)0.0544 (9)0.0476 (9)−0.0067 (7)0.0148 (7)0.0024 (7)
N30.0430 (9)0.0758 (12)0.0519 (10)−0.0112 (8)0.0060 (7)−0.0113 (9)
O10.0555 (9)0.1069 (12)0.0594 (9)−0.0111 (8)0.0190 (7)−0.0381 (9)

Geometric parameters (Å, °)

C1—C21.384 (2)C10—C151.391 (2)
C1—C61.385 (2)C10—C111.395 (2)
C1—C71.494 (2)C11—C121.379 (2)
C2—F11.3521 (19)C11—H110.9300
C2—C31.370 (2)C12—C131.373 (3)
C3—C41.369 (3)C12—H120.9300
C3—H30.9300C13—C141.381 (3)
C4—F21.353 (2)C13—H130.9300
C4—C51.362 (3)C14—C151.381 (2)
C5—C61.379 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300C16—N31.312 (2)
C7—O11.212 (2)C16—N11.332 (2)
C7—C81.485 (2)C16—H160.9300
C8—C91.336 (2)C17—N21.312 (2)
C8—N11.4302 (19)C17—N31.348 (2)
C9—C101.464 (2)C17—H170.9300
C9—H90.9300N1—N21.3640 (19)
C2—C1—C6116.68 (15)C15—C10—C9123.22 (15)
C2—C1—C7121.38 (15)C11—C10—C9118.14 (14)
C6—C1—C7121.63 (15)C12—C11—C10120.82 (16)
F1—C2—C3117.62 (16)C12—C11—H11119.6
F1—C2—C1118.97 (16)C10—C11—H11119.6
C3—C2—C1123.41 (17)C13—C12—C11120.02 (17)
C4—C3—C2116.88 (17)C13—C12—H12120.0
C4—C3—H3121.6C11—C12—H12120.0
C2—C3—H3121.6C12—C13—C14119.91 (17)
F2—C4—C5118.67 (18)C12—C13—H13120.0
F2—C4—C3118.26 (17)C14—C13—H13120.0
C5—C4—C3123.06 (17)C15—C14—C13120.53 (17)
C4—C5—C6118.19 (17)C15—C14—H14119.7
C4—C5—H5120.9C13—C14—H14119.7
C6—C5—H5120.9C14—C15—C10120.13 (16)
C5—C6—C1121.76 (16)C14—C15—H15119.9
C5—C6—H6119.1C10—C15—H15119.9
C1—C6—H6119.1N3—C16—N1111.51 (17)
O1—C7—C8119.98 (16)N3—C16—H16124.2
O1—C7—C1120.11 (16)N1—C16—H16124.2
C8—C7—C1119.91 (14)N2—C17—N3116.09 (17)
C9—C8—N1120.88 (14)N2—C17—H17122.0
C9—C8—C7124.84 (15)N3—C17—H17122.0
N1—C8—C7114.23 (14)C16—N1—N2108.90 (14)
C8—C9—C10129.73 (15)C16—N1—C8130.75 (15)
C8—C9—H9115.1N2—N1—C8120.34 (12)
C10—C9—H9115.1C17—N2—N1101.76 (14)
C15—C10—C11118.54 (15)C16—N3—C17101.74 (15)
C6—C1—C2—F1179.59 (16)C7—C8—C9—C10−170.57 (16)
C7—C1—C2—F1−6.6 (3)C8—C9—C10—C1531.5 (3)
C6—C1—C2—C30.2 (3)C8—C9—C10—C11−152.16 (17)
C7—C1—C2—C3173.98 (17)C15—C10—C11—C12−2.5 (2)
F1—C2—C3—C4179.31 (17)C9—C10—C11—C12−179.05 (15)
C1—C2—C3—C4−1.3 (3)C10—C11—C12—C132.2 (3)
C2—C3—C4—F2−179.28 (17)C11—C12—C13—C14−0.2 (3)
C2—C3—C4—C51.3 (3)C12—C13—C14—C15−1.5 (3)
F2—C4—C5—C6−179.65 (17)C13—C14—C15—C101.2 (3)
C3—C4—C5—C6−0.3 (3)C11—C10—C15—C140.8 (2)
C4—C5—C6—C1−0.9 (3)C9—C10—C15—C14177.13 (16)
C2—C1—C6—C50.9 (3)N3—C16—N1—N2−0.9 (2)
C7—C1—C6—C5−172.81 (17)N3—C16—N1—C8179.80 (16)
C2—C1—C7—O1−46.0 (3)C9—C8—N1—C16−118.1 (2)
C6—C1—C7—O1127.4 (2)C7—C8—N1—C1659.6 (2)
C2—C1—C7—C8133.93 (18)C9—C8—N1—N262.6 (2)
C6—C1—C7—C8−52.6 (2)C7—C8—N1—N2−119.70 (16)
O1—C7—C8—C9166.95 (18)N3—C17—N2—N10.1 (2)
C1—C7—C8—C9−13.0 (3)C16—N1—N2—C170.46 (18)
O1—C7—C8—N1−10.6 (2)C8—N1—N2—C17179.89 (15)
C1—C7—C8—N1169.46 (14)N1—C16—N3—C170.8 (2)
N1—C8—C9—C106.8 (3)N2—C17—N3—C16−0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···N10.932.563.048 (2)113
C12—H12···N3i0.932.683.540 (2)154
C17—H17···F1ii0.932.623.280 (2)128

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2596).

References

  • Bruker (1997). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Reichwald, C., Shimony, O., Dunkel, U., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). J. Med. Chem 51, 659–665. [PubMed]
  • Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography