PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m866.
Published online 2009 July 4. doi:  10.1107/S160053680902488X
PMCID: PMC2977444

Tetra­aqua­(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)zinc(II) sulfate

Abstract

The asymmetric unit of the title compound, [Zn(C12H12N2)(H2O)4]SO4, consists of a ZnII complex cation, a sulfate anion and four mol­ecules of water coordinated to the ZnII atom. The ZnII complex cation, with approximate twofold symmetry, displays a slightly distorted octa­hedral geometry around the ZnII atom, which is coordinated by two N atoms from a 5,5′-dimethyl-2,2′-bipyridine ligand and by the O atoms of four water mol­ecules. In the crystal, O—H(...)O hydrogen bonds help to establish the packing.

Related literature

For related structures, see: Schubert, Eschbaumer et al. (1999 [triangle]); Schubert, Hochwimmer et al. (1999 [triangle]); Shi et al. (2009 [triangle]); Zhang et al. (2009 [triangle]); Momeni et al. (2009 [triangle]); Kim et al. (2009 [triangle]); Yang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m866-scheme1.jpg

Experimental

Crystal data

  • [Zn(C12H12N2)(H2O)4]SO4
  • M r = 417.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m866-efi1.jpg
  • a = 9.5648 (17) Å
  • b = 9.6050 (17) Å
  • c = 18.477 (3) Å
  • β = 102.453 (4)°
  • V = 1657.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.65 mm−1
  • T = 296 K
  • 0.30 × 0.26 × 0.25 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.637, T max = 0.683
  • 9462 measured reflections
  • 3263 independent reflections
  • 2648 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.091
  • S = 1.04
  • 3263 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902488X/pv2173sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902488X/pv2173Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 092300410031).

supplementary crystallographic information

Comment

As a contribution to structural characterization of 5,5'-dimethyl-2,2'-bipyridine complexes (Schubert, Eschbaumer et al. 1999; Schubert, Hochwimmer et al. 1999; Yang et al., 2001) we present here the crystal structure of the title complex, [ZnL(H2O)4].SO4 (L = 5,5'-dimethyl-2,2'-bipyridine).

The molecular structure of the title compound (Fig. 1) is made up of a [ZnL(H2O)4]2+ cation and a sulfate anion; the cation shows an approximate two fold rotational symmetry. The Zinc atom is coordinated totwo N atoms of a 5,5'-dimethyl-2,2'-bipyridine ligand and four aqua ligands to form distorted octahedral geometry.

With O—H···O and O—H···S hydrogen bonds (Table 1), a three-dimensional network is formed as shown in Fig. 2.

Experimental

The title compound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 5,5'-dimethyl-2,2'-bipyridine (0.2 mmol), ZnSO4 (0.2 mmol) and one drop of Et3N (pH ≈ 8–9) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.96 Å (methyl CH3), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) otherwise.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
Fig. 2.
Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Zn(C12H12N2)(H2O)4]SO4F(000) = 864
Mr = 417.73Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4417 reflections
a = 9.5648 (17) Åθ = 2.2–27.9°
b = 9.6050 (17) ŵ = 1.65 mm1
c = 18.477 (3) ÅT = 296 K
β = 102.453 (4)°Block, colourless
V = 1657.5 (5) Å30.30 × 0.26 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3263 independent reflections
Radiation source: fine-focus sealed tube2648 reflections with I > 2σ(I)
graphiteRint = 0.085
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.637, Tmax = 0.683k = −11→10
9462 measured reflectionsl = −22→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.041P)2] where P = (Fo2 + 2Fc2)/3
3263 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.27251 (3)0.86942 (3)0.804800 (16)0.02610 (12)
S10.74896 (6)0.86596 (7)0.74789 (4)0.02499 (17)
N10.4185 (2)0.7784 (2)0.89612 (12)0.0321 (5)
N20.2216 (2)0.9768 (2)0.89671 (12)0.0324 (5)
O1W0.1234 (2)0.7150 (2)0.80803 (15)0.0632 (7)
H1WA0.14000.62810.81250.076*
H1WB0.03360.72680.80180.076*
O2W0.12257 (18)0.9747 (2)0.72531 (10)0.0378 (5)
H2WA0.03290.96060.71300.045*
H2WB0.13811.05860.71460.045*
O3W0.33946 (19)0.7568 (2)0.72175 (10)0.0347 (5)
H3WA0.42030.77430.71180.042*
H3WB0.32640.66930.71820.042*
O4W0.4183 (2)1.0182 (2)0.78745 (13)0.0486 (6)
H4WA0.50661.00520.78840.058*
H4WB0.40491.10530.79010.058*
O50.70202 (19)0.9743 (2)0.79426 (10)0.0335 (4)
O60.62104 (18)0.7951 (2)0.70442 (10)0.0343 (4)
O70.83003 (19)0.9308 (2)0.69779 (11)0.0359 (5)
O80.83933 (19)0.7631 (2)0.79580 (10)0.0358 (5)
C10.5164 (3)0.6810 (3)0.89163 (17)0.0369 (7)
H1A0.52330.64980.84490.044*
C20.6085 (3)0.6240 (3)0.95322 (17)0.0379 (7)
C30.7185 (3)0.5184 (4)0.9430 (2)0.0527 (9)
H3A0.67730.45590.90360.079*
H3B0.74940.46670.98810.079*
H3C0.79910.56520.93080.079*
C40.5934 (3)0.6713 (3)1.02187 (17)0.0409 (7)
H4A0.65110.63511.06480.049*
C50.4932 (3)0.7720 (3)1.02696 (15)0.0393 (7)
H50.48430.80431.07320.047*
C60.4054 (3)0.8254 (3)0.96315 (15)0.0311 (6)
C70.2972 (3)0.9349 (3)0.96385 (15)0.0303 (6)
C80.2708 (3)0.9936 (3)1.02828 (16)0.0399 (7)
H80.32140.96341.07430.048*
C90.1693 (3)1.0966 (3)1.02349 (18)0.0419 (7)
H90.15171.13601.06660.050*
C100.0931 (3)1.1423 (3)0.95547 (18)0.0384 (7)
C11−0.0155 (4)1.2571 (4)0.9464 (2)0.0544 (9)
H11A−0.05021.26650.99110.082*
H11B−0.09381.23530.90600.082*
H11C0.02811.34280.93620.082*
C120.1239 (3)1.0770 (3)0.89353 (17)0.0371 (7)
H120.07321.10480.84700.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01825 (17)0.02401 (18)0.0354 (2)0.00040 (12)0.00430 (11)−0.00115 (13)
S10.0161 (3)0.0206 (3)0.0387 (4)0.0001 (2)0.0068 (2)−0.0004 (3)
N10.0287 (12)0.0324 (12)0.0335 (13)0.0039 (10)0.0029 (9)0.0026 (11)
N20.0292 (12)0.0330 (12)0.0359 (14)0.0003 (10)0.0089 (10)−0.0031 (11)
O1W0.0231 (11)0.0266 (12)0.143 (2)−0.0025 (10)0.0252 (12)−0.0011 (13)
O2W0.0200 (9)0.0340 (11)0.0553 (13)0.0050 (8)−0.0006 (8)0.0072 (10)
O3W0.0266 (10)0.0263 (10)0.0534 (12)0.0023 (8)0.0134 (8)−0.0075 (9)
O4W0.0229 (10)0.0246 (10)0.1025 (18)−0.0007 (9)0.0230 (10)0.0024 (11)
O50.0294 (10)0.0277 (10)0.0452 (12)0.0053 (8)0.0116 (8)−0.0061 (9)
O60.0203 (9)0.0336 (11)0.0478 (12)−0.0079 (8)0.0050 (8)−0.0051 (9)
O70.0282 (10)0.0343 (11)0.0480 (12)−0.0060 (9)0.0148 (8)0.0016 (9)
O80.0270 (10)0.0270 (10)0.0522 (13)0.0076 (8)0.0058 (8)0.0053 (9)
C10.0317 (15)0.0394 (16)0.0392 (17)0.0061 (13)0.0064 (12)−0.0003 (14)
C20.0318 (15)0.0325 (16)0.0469 (19)−0.0001 (13)0.0033 (12)0.0034 (14)
C30.0392 (18)0.052 (2)0.064 (2)0.0148 (16)0.0058 (14)0.0063 (18)
C40.0316 (16)0.0439 (17)0.0438 (19)0.0053 (14)0.0006 (12)0.0127 (15)
C50.0425 (17)0.0427 (17)0.0320 (17)−0.0004 (15)0.0062 (12)0.0031 (14)
C60.0264 (14)0.0307 (14)0.0361 (16)−0.0012 (12)0.0065 (11)0.0012 (13)
C70.0261 (14)0.0304 (14)0.0340 (16)−0.0036 (12)0.0057 (11)−0.0008 (12)
C80.0412 (17)0.0450 (18)0.0337 (18)0.0020 (15)0.0083 (13)−0.0008 (14)
C90.0440 (18)0.0430 (17)0.0437 (19)−0.0030 (15)0.0205 (14)−0.0076 (15)
C100.0296 (15)0.0363 (16)0.0520 (19)0.0004 (13)0.0149 (13)−0.0077 (14)
C110.049 (2)0.049 (2)0.068 (2)0.0133 (17)0.0188 (16)−0.0089 (17)
C120.0306 (15)0.0380 (16)0.0417 (17)0.0036 (13)0.0053 (12)0.0017 (14)

Geometric parameters (Å, °)

Zn1—O1W2.068 (2)C1—H1A0.9300
Zn1—O4W2.0693 (19)C2—C41.384 (4)
Zn1—O2W2.0806 (18)C2—C31.502 (4)
Zn1—O3W2.0880 (17)C3—H3A0.9600
Zn1—N22.131 (2)C3—H3B0.9600
Zn1—N12.132 (2)C3—H3C0.9600
S1—O71.4682 (19)C4—C51.379 (4)
S1—O81.4756 (19)C4—H4A0.9300
S1—O61.4772 (19)C5—C61.389 (4)
S1—O51.4779 (19)C5—H50.9300
N1—C11.339 (3)C6—C71.477 (4)
N1—C61.349 (3)C7—C81.388 (4)
N2—C121.334 (4)C8—C91.376 (4)
N2—C71.355 (3)C8—H80.9300
O1W—H1WA0.8496C9—C101.381 (4)
O1W—H1WB0.8495C9—H90.9300
O2W—H2WA0.8497C10—C121.392 (4)
O2W—H2WB0.8497C10—C111.499 (4)
O3W—H3WA0.8497C11—H11A0.9600
O3W—H3WB0.8498C11—H11B0.9600
O4W—H4WA0.8498C11—H11C0.9600
O4W—H4WB0.8499C12—H120.9300
C1—C21.392 (4)
O1W—Zn1—O4W172.74 (10)C2—C1—H1A118.3
O1W—Zn1—O2W89.68 (9)C4—C2—C1116.5 (3)
O4W—Zn1—O2W86.56 (8)C4—C2—C3123.5 (3)
O1W—Zn1—O3W88.40 (9)C1—C2—C3120.0 (3)
O4W—Zn1—O3W85.42 (8)C2—C3—H3A109.5
O2W—Zn1—O3W90.41 (8)C2—C3—H3B109.5
O1W—Zn1—N292.68 (9)H3A—C3—H3B109.5
O4W—Zn1—N293.82 (9)C2—C3—H3C109.5
O2W—Zn1—N294.95 (8)H3A—C3—H3C109.5
O3W—Zn1—N2174.54 (8)H3B—C3—H3C109.5
O1W—Zn1—N191.22 (10)C5—C4—C2120.3 (3)
O4W—Zn1—N193.29 (9)C5—C4—H4A119.9
O2W—Zn1—N1172.85 (8)C2—C4—H4A119.9
O3W—Zn1—N196.70 (8)C4—C5—C6120.2 (3)
N2—Zn1—N177.93 (9)C4—C5—H5119.9
O7—S1—O8109.97 (11)C6—C5—H5119.9
O7—S1—O6109.92 (12)N1—C6—C5119.8 (3)
O8—S1—O6109.07 (11)N1—C6—C7116.8 (2)
O7—S1—O5109.56 (11)C5—C6—C7123.5 (3)
O8—S1—O5109.62 (11)N2—C7—C8120.3 (3)
O6—S1—O5108.68 (11)N2—C7—C6116.1 (2)
C1—N1—C6119.7 (2)C8—C7—C6123.6 (3)
C1—N1—Zn1125.80 (19)C9—C8—C7119.5 (3)
C6—N1—Zn1114.48 (17)C9—C8—H8120.2
C12—N2—C7119.0 (2)C7—C8—H8120.2
C12—N2—Zn1126.3 (2)C8—C9—C10120.9 (3)
C7—N2—Zn1114.67 (18)C8—C9—H9119.5
Zn1—O1W—H1WA126.3C10—C9—H9119.5
Zn1—O1W—H1WB125.8C9—C10—C12116.2 (3)
H1WA—O1W—H1WB107.8C9—C10—C11123.6 (3)
Zn1—O2W—H2WA127.8C12—C10—C11120.3 (3)
Zn1—O2W—H2WB119.8C10—C11—H11A109.5
H2WA—O2W—H2WB107.8C10—C11—H11B109.5
Zn1—O3W—H3WA119.6H11A—C11—H11B109.5
Zn1—O3W—H3WB120.4C10—C11—H11C109.5
H3WA—O3W—H3WB107.8H11A—C11—H11C109.5
Zn1—O4W—H4WA126.5H11B—C11—H11C109.5
Zn1—O4W—H4WB123.8N2—C12—C10124.0 (3)
H4WA—O4W—H4WB107.7N2—C12—H12118.0
N1—C1—C2123.5 (3)C10—C12—H12118.0
N1—C1—H1A118.3
O1W—Zn1—N1—C188.9 (2)C1—N1—C6—C5−0.2 (4)
O4W—Zn1—N1—C1−85.4 (2)Zn1—N1—C6—C5178.9 (2)
O3W—Zn1—N1—C10.3 (2)C1—N1—C6—C7178.8 (2)
N2—Zn1—N1—C1−178.6 (2)Zn1—N1—C6—C7−2.1 (3)
O1W—Zn1—N1—C6−90.20 (19)C4—C5—C6—N1−0.1 (4)
O4W—Zn1—N1—C695.50 (19)C4—C5—C6—C7−178.9 (3)
O3W—Zn1—N1—C6−178.73 (18)C12—N2—C7—C81.4 (4)
N2—Zn1—N1—C62.29 (18)Zn1—N2—C7—C8−177.9 (2)
O1W—Zn1—N2—C12−90.7 (2)C12—N2—C7—C6−179.0 (2)
O4W—Zn1—N2—C1286.1 (2)Zn1—N2—C7—C61.8 (3)
O2W—Zn1—N2—C12−0.8 (2)N1—C6—C7—N20.2 (4)
N1—Zn1—N2—C12178.6 (2)C5—C6—C7—N2179.1 (2)
O1W—Zn1—N2—C788.50 (19)N1—C6—C7—C8179.9 (3)
O4W—Zn1—N2—C7−94.72 (19)C5—C6—C7—C8−1.2 (4)
O2W—Zn1—N2—C7178.41 (18)N2—C7—C8—C9−1.3 (4)
N1—Zn1—N2—C7−2.17 (18)C6—C7—C8—C9179.1 (3)
C6—N1—C1—C2−0.4 (4)C7—C8—C9—C100.1 (4)
Zn1—N1—C1—C2−179.4 (2)C8—C9—C10—C120.9 (4)
N1—C1—C2—C41.1 (4)C8—C9—C10—C11−178.0 (3)
N1—C1—C2—C3−178.0 (3)C7—N2—C12—C10−0.3 (4)
C1—C2—C4—C5−1.3 (4)Zn1—N2—C12—C10178.9 (2)
C3—C2—C4—C5177.8 (3)C9—C10—C12—N2−0.9 (4)
C2—C4—C5—C60.8 (4)C11—C10—C12—N2178.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4W—H4WB···S1i0.852.913.701 (2)155
O4W—H4WB···O6i0.851.842.695 (3)179
O4W—H4WA···S10.852.913.697 (2)155
O4W—H4WA···O50.851.872.722 (3)178
O3W—H3WB···O5ii0.851.902.748 (3)178
O3W—H3WA···O60.851.962.804 (3)170
O2W—H2WB···O8i0.851.992.831 (3)170
O2W—H2WA···O7iii0.851.922.766 (3)173
O1W—H1WB···S1iii0.853.003.801 (2)157
O1W—H1WB···O8iii0.851.872.717 (3)175
O1W—H1WA···O7ii0.851.932.772 (3)169

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2173).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615–m616. [PMC free article] [PubMed]
  • Momeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690. [PMC free article] [PubMed]
  • Schubert, U. S., Eschbaumer, C. & Hochwimmer, G. (1999). Synthesis, pp. 779–782.
  • Schubert, U. S., Hochwimmer, G., Spindler, C. & Nuyken, O. (1999). Macromol. Rapid Commun.20, 351–355.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, W.-J. (2009). Acta Cryst. E65, m653. [PMC free article] [PubMed]
  • Yang, X. J., Janiak, C., Heinze, J., Drepper, F. & Mayer, P. (2001). Inorg. Chim. Acta, 318, 103–116.
  • Zhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography