PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m896–m897.
Published online 2009 July 11. doi:  10.1107/S1600536809026130
PMCID: PMC2977437

Poly[penta­aqua­tetra­kis(μ2-nicotinato-κ2 N:O)(perchlorato-κO)lanthanum(III)disilver(I)]

Abstract

In the title complex, [Ag2La(C6H4NO2)4(ClO4)(H2O)5]n, the LaIII atom, lying on a twofold rotation axis, is eight-coordinated by four O atoms from four nicotinate (nic) ligands and four water mol­ecules in a distorted square-anti­prismatic coordination geometry. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak inter­actions with one O atom from a half-occupied ClO4 anion and a water mol­ecule lying on a twofold axis. Two Ag(nic)2 units connect two La atoms, forming a cyclic unit. These units are further extended into an infinite zigzag chain. The chains are bridged by the disordered perchlorate ions via weak Ag—O [2.678 (2) Å] inter­actions. O—H(...)O hydrogen bonds, weak Ag(...)Ag [3.3340 (15) Å] inter­actions and π–π inter­actions between the pyridyl rings [centroid–centroid distance = 3.656 (2) Å] lead to a three-dimensional network.

Related literature

For related structures see: Evans & Lin (2001 [triangle]); Luo et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m896-scheme1.jpg

Experimental

Crystal data

  • [Ag2La(C6H4NO2)4(ClO4)(H2O)5]
  • M r = 1032.59
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m896-efi7.jpg
  • a = 35.140 (5) Å
  • b = 12.3371 (16) Å
  • c = 15.046 (2) Å
  • V = 6522.8 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.64 mm−1
  • T = 298 K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.465, T max = 0.567
  • 15911 measured reflections
  • 2999 independent reflections
  • 2251 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.090
  • S = 1.95
  • 2999 reflections
  • 212 parameters
  • 48 restraints
  • H-atom parameters constrained
  • Δρmax = 1.90 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026130/hy2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026130/hy2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for support of this work.

supplementary crystallographic information

Comment

In the structural investigation of nictinate complexes, it has been found that nictinate functions as a multidentate ligand with versatile binding and coordination modes (Evans & Lin, 2001; Luo et al., 2004). In this paper, we report the crystal structure of the title compound, a new LaIII complex, resulted from the hydrothermal treatment of La2O3, AgNO3, perchloric acid and nicotinic acid in water.

As depicted in Fig. 1, the LaIII atom, lying on a twofold rotation axis, is surrounded by four O atoms from four nic ligands and four water molecules in a distorted square-antiprismatic coordination geometry. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak interactions with one O atom from a half-occupied ClO4- anion and a water molecule lying on a twofold rotation axis. The two pyridyl rings of the nic ligands coordinating to the Ag atom are alomost coplanar and have a dihedral angle of 1.74 (2)°. Two Ag(nic)2 units connect two La atoms, forming a cyclic unit. These cycles are further extended into an infinite zigzag chain. The chains are bridged by disordered perchlorate ions via the weak Ag—O [2.678 (2) Å] interactions into a two-dimensional wavelike layer in the b axis direction (Fig. 2). Finally, the layers are further self-assembled into a three-dimensional supramolecular network (Fig. 3) via O—H···O hydrogen bonds involving the coordinated water molecules and carboxylate O atoms from the nic ligands (Table 1), weak Ag···Ag [3.3340 (15) Å] interactions and π–π stacking interactions between the pyridyl rings [centroid–centroid distance = 3.656 (2) Å].

Experimental

A mixture of La2O3 (0.162 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), HClO4 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d, and then cooled to room temperature at a rate of 10 K h-1. The pale-purple crystals obtained were washed with water and dried in air (yield 46% based on La).

Refinement

H atoms on C atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The perchlorate anion is disordered with an occupancy factor of 0.5. The hightest peak in final difference map is located 1.00 Å from La1 and the deepest hole is located 0.94 Å from La1.

Figures

Fig. 1.
The asymetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, y, 1/2 - z; (ii) x, 1 - y, 1 - z; (iii) x, 3/2 - y, -1/2 + z; (iv) 1/2 - x, 3/2 - y, 1 - z.]
Fig. 2.
View of the two-dimensional wavelike layer of the title compound. Dashed lines denote weak Ag···O interactions.
Fig. 3.
View of the three-dimensional network via hydrogen bonds, weak Ag···O, Ag···Ag, and π–π interactions (dashed lines).

Crystal data

[Ag2La(C6H4NO2)4(ClO4)(H2O)5]F(000) = 4016
Mr = 1032.59Dx = 2.103 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 3600 reflections
a = 35.140 (5) Åθ = 1.4–28°
b = 12.3371 (16) ŵ = 2.64 mm1
c = 15.046 (2) ÅT = 298 K
V = 6522.8 (15) Å3Block, colorless
Z = 80.30 × 0.25 × 0.22 mm

Data collection

Bruker APEXII CCD diffractometer2999 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −42→41
Tmin = 0.465, Tmax = 0.567k = −14→11
15911 measured reflectionsl = −18→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.95w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max = 0.008
212 parametersΔρmax = 1.90 e Å3
48 restraintsΔρmin = −0.96 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
La10.25001.08273 (5)0.25000.02358 (16)
Ag10.389767 (18)0.60965 (6)0.56481 (4)0.0465 (2)
C10.3039 (2)0.9196 (6)0.3991 (4)0.0299 (18)
C20.34312 (19)0.8866 (6)0.4214 (5)0.0318 (18)
C30.3495 (2)0.7964 (6)0.4729 (4)0.0331 (19)
H30.32870.75910.49560.040*
C40.4138 (2)0.8140 (8)0.4627 (5)0.053 (3)
H40.43800.78960.47700.064*
C50.4097 (2)0.9060 (8)0.4114 (7)0.071 (3)
H50.43110.94300.39130.085*
C60.3744 (2)0.9422 (7)0.3905 (5)0.048 (2)
H60.37141.00390.35570.057*
C70.4322 (2)0.4349 (7)0.6693 (6)0.054 (3)
H70.45340.47290.64890.065*
C80.3685 (2)0.4135 (6)0.6768 (5)0.0313 (18)
H80.34440.43760.66050.038*
C90.37074 (19)0.3248 (6)0.7314 (4)0.0288 (18)
C100.4064 (2)0.2925 (7)0.7546 (6)0.060 (3)
H100.40980.23310.79190.072*
C110.4374 (2)0.3480 (8)0.7226 (7)0.078 (4)
H110.46190.32570.73750.094*
C120.3359 (2)0.2677 (6)0.7620 (5)0.0292 (17)
N10.38410 (17)0.7606 (5)0.4913 (4)0.0369 (16)
N20.39810 (17)0.4670 (5)0.6458 (4)0.0375 (16)
O10.30034 (13)0.9960 (4)0.3448 (3)0.0366 (13)
O20.27688 (13)0.8707 (4)0.4351 (3)0.0331 (13)
O30.30462 (12)0.3020 (4)0.7338 (3)0.0328 (12)
O40.33989 (13)0.1890 (5)0.8112 (3)0.0432 (15)
O1W0.28251 (13)0.9406 (4)0.1593 (3)0.0373 (14)
H1W0.26790.91150.12040.056*
H2W0.29830.89590.17950.056*
O2W0.24825 (13)1.1647 (4)0.4015 (3)0.0478 (14)
H3W0.23851.22690.40290.072*
H4W0.26201.15350.44610.072*
O3W0.32305 (14)0.50000.50000.074 (3)
H5W0.30860.52970.53560.111*
Cl10.5030 (4)0.6862 (4)0.5923 (4)0.0816 (15)0.50
O50.5071 (4)0.8007 (6)0.5862 (9)0.118 (3)0.50
O60.4640 (3)0.6544 (14)0.5835 (10)0.118 (3)0.50
O70.5133 (4)0.6545 (12)0.6849 (7)0.118 (3)0.50
O80.5275 (4)0.6292 (12)0.5351 (9)0.118 (3)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.0267 (3)0.0230 (3)0.0210 (3)0.000−0.0014 (3)0.000
Ag10.0542 (4)0.0386 (4)0.0466 (4)0.0050 (4)−0.0029 (3)0.0150 (3)
C10.043 (4)0.027 (5)0.020 (4)0.006 (4)−0.007 (4)−0.007 (3)
C20.034 (4)0.032 (5)0.028 (4)−0.004 (4)−0.004 (4)−0.004 (4)
C30.032 (4)0.036 (5)0.030 (4)0.005 (4)0.000 (4)0.010 (4)
C40.038 (5)0.061 (8)0.060 (6)−0.003 (5)−0.004 (4)0.024 (5)
C50.033 (5)0.075 (9)0.105 (9)−0.004 (5)−0.001 (5)0.049 (7)
C60.044 (5)0.052 (7)0.047 (5)−0.006 (4)−0.011 (4)0.029 (4)
C70.033 (5)0.051 (7)0.078 (7)−0.004 (4)−0.002 (5)0.026 (5)
C80.029 (4)0.037 (5)0.028 (4)0.002 (4)−0.001 (3)−0.004 (4)
C90.033 (4)0.028 (5)0.025 (5)0.003 (4)−0.006 (3)−0.001 (4)
C100.039 (5)0.055 (6)0.087 (7)−0.002 (4)−0.007 (5)0.040 (6)
C110.027 (5)0.069 (8)0.139 (10)−0.003 (5)−0.007 (5)0.059 (7)
C120.035 (4)0.025 (5)0.027 (5)−0.003 (3)0.004 (4)−0.010 (4)
N10.037 (4)0.037 (5)0.037 (4)0.002 (4)−0.004 (3)0.011 (3)
N20.040 (4)0.033 (4)0.040 (4)0.004 (3)0.004 (3)0.008 (3)
O10.041 (3)0.031 (4)0.038 (3)0.006 (2)−0.005 (3)0.013 (3)
O20.037 (3)0.036 (4)0.027 (3)−0.002 (2)0.001 (2)0.005 (2)
O30.027 (3)0.033 (3)0.038 (3)0.007 (2)−0.004 (2)−0.002 (2)
O40.037 (3)0.038 (4)0.054 (4)−0.004 (3)−0.007 (3)0.021 (3)
O1W0.039 (3)0.034 (4)0.039 (3)0.007 (2)−0.010 (2)−0.009 (2)
O2W0.073 (3)0.046 (4)0.025 (3)0.026 (3)−0.017 (3)−0.009 (2)
O3W0.050 (5)0.123 (10)0.048 (6)0.0000.000−0.011 (5)
Cl10.044 (3)0.069 (3)0.132 (4)0.015 (5)0.044 (5)0.014 (3)
O50.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O60.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O70.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)
O80.075 (5)0.108 (7)0.172 (8)0.003 (5)0.005 (5)0.035 (6)

Geometric parameters (Å, °)

La1—O12.511 (5)C7—C111.352 (11)
La1—O3i2.401 (4)C7—H70.9300
La1—O1W2.498 (5)C8—N21.317 (8)
La1—O2W2.494 (4)C8—C91.371 (10)
Ag1—N12.175 (6)C8—H80.9300
Ag1—N22.161 (6)C9—C101.360 (9)
Ag1—O62.681 (2)C9—C121.484 (10)
Ag1—O3W2.877 (6)C10—C111.375 (11)
Ag1—Ag1ii3.3352 (14)C10—H100.9300
C1—O11.254 (8)C11—H110.9300
C1—O21.249 (8)C12—O41.230 (8)
C1—C21.475 (9)C12—O31.253 (8)
C2—C61.378 (10)O3—La1iii2.401 (4)
C2—C31.373 (10)O1W—H1W0.8564
C3—N11.324 (8)O1W—H2W0.8388
C3—H30.9300O2W—H3W0.8404
C4—N11.306 (9)O2W—H4W0.8395
C4—C51.379 (11)O3W—H5W0.8241
C4—H40.9300Cl1—O81.4076
C5—C61.354 (10)Cl1—O51.4226
C5—H50.9300Cl1—O61.4309
C6—H60.9300Cl1—O71.4925
C7—N21.312 (9)
O3iii—La1—O3i107.4 (2)N1—C4—H4119.5
O3iii—La1—O2Wiv82.65 (16)C5—C4—H4119.5
O3i—La1—O2Wiv69.35 (15)C4—C5—C6119.8 (8)
O3iii—La1—O2W69.35 (15)C4—C5—H5120.1
O3i—La1—O2W82.65 (16)C6—C5—H5120.1
O2Wiv—La1—O2W132.1 (2)C2—C6—C5119.2 (8)
O3iii—La1—O1W146.78 (15)C2—C6—H6120.4
O3i—La1—O1W89.71 (15)C5—C6—H6120.4
O2Wiv—La1—O1W76.96 (16)N2—C7—C11121.5 (8)
O2W—La1—O1W142.66 (15)N2—C7—H7119.2
O3iii—La1—O1Wiv89.71 (15)C11—C7—H7119.2
O3i—La1—O1Wiv146.78 (15)N2—C8—C9124.5 (7)
O2Wiv—La1—O1Wiv142.66 (15)N2—C8—H8117.8
O2W—La1—O1Wiv76.96 (16)C9—C8—H8117.8
O1W—La1—O1Wiv90.8 (2)C10—C9—C8116.2 (7)
O3iii—La1—O1iv75.34 (16)C10—C9—C12122.7 (7)
O3i—La1—O1iv139.26 (15)C8—C9—C12121.1 (6)
O2Wiv—La1—O1iv70.81 (16)C9—C10—C11119.7 (8)
O2W—La1—O1iv132.40 (16)C9—C10—H10120.2
O1W—La1—O1iv73.32 (16)C11—C10—H10120.2
O1Wiv—La1—O1iv71.89 (16)C7—C11—C10119.7 (8)
O3iii—La1—O1139.26 (15)C7—C11—H11120.1
O3i—La1—O175.34 (16)C10—C11—H11120.1
O2Wiv—La1—O1132.40 (16)O4—C12—O3124.7 (7)
O2W—La1—O170.81 (16)O4—C12—C9117.9 (7)
O1W—La1—O171.89 (16)O3—C12—C9117.4 (7)
O1Wiv—La1—O173.32 (16)C4—N1—C3119.7 (7)
O1iv—La1—O1129.6 (2)C4—N1—Ag1121.8 (5)
N2—Ag1—N1175.3 (2)C3—N1—Ag1118.5 (5)
N2—Ag1—Ag1ii70.66 (16)C7—N2—C8118.4 (7)
N1—Ag1—Ag1ii113.42 (17)C7—N2—Ag1121.4 (5)
O6—Ag1—N288.67 (6)C8—N2—Ag1120.0 (5)
O6—Ag1—N188.06 (7)C1—O1—La1139.5 (5)
O3W—Ag1—N198.95 (17)C12—O3—La1iii150.2 (5)
O3W—Ag1—N285.33 (16)La1—O1W—H1W113.1
O3W—Ag1—O6157.70 (7)La1—O1W—H2W124.4
O1—C1—O2124.7 (7)H1W—O1W—H2W111.6
O1—C1—C2116.7 (7)La1—O2W—H3W113.8
O2—C1—C2118.6 (7)La1—O2W—H4W130.5
C6—C2—C3117.6 (7)H3W—O2W—H4W111.4
C6—C2—C1122.1 (7)O8—Cl1—O5113.3
C3—C2—C1120.3 (7)O8—Cl1—O6113.1
N1—C3—C2122.5 (7)O5—Cl1—O6111.3
N1—C3—H3118.7O8—Cl1—O7106.8
C2—C3—H3118.7O5—Cl1—O7107.2
N1—C4—C5121.1 (8)O6—Cl1—O7104.5

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1, −z+1; (iii) −x+1/2, −y+3/2, −z+1; (iv) −x+1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.861.852.667 (6)159
O1W—H2W···O4ii0.841.802.611 (7)161
O2W—H3W···O2v0.841.922.738 (7)165
O2W—H4W···O2vi0.841.892.693 (7)161
O3W—H5W···O1Wvii0.822.112.883 (5)157

Symmetry codes: (iv) −x+1/2, y, −z+1/2; (ii) x, −y+1, −z+1; (v) −x+1/2, y+1/2, z; (vi) x, −y+2, −z+1; (vii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2200).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Evans, O. R. & Lin, W. B. (2001). Chem. Mater.13, 3009–3017.
  • Luo, J. H., Jiang, F. L., Wang, R. H., Han, L., Lin, Z. Z., Cao, R. & Hong, M. C. (2004). J. Mol. Struct.707, 211–216.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography