PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m927.
Published online 2009 July 15. doi:  10.1107/S1600536809027147
PMCID: PMC2977432

Bis(3-hydroxy­pyridine-κN)bis­(3-nitro­benzoato-κO)zinc(II)

Abstract

The title complex, [Zn(C7H4NO4)2(C5H5NO)2], has site symmetry 2. The ZnII ion is located on a crystallographic twofold rotation axis and assumes a distorted tetra­hedral ZnN2O2 coordination geometry. Mol­ecules are linked by an inter­molecular O—H(...)O hydrogen bond and π–π stacking inter­actions between pyridine rings [centroid–centroid speparation 3.594 (1) Å].

Related literature

For general background, see: Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For a related structure, see: Yan et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m927-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H4NO4)2(C5H5NO)2]
  • M r = 587.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m927-efi2.jpg
  • a = 22.992 (4) Å
  • b = 7.2412 (12) Å
  • c = 15.797 (3) Å
  • β = 111.584 (5)°
  • V = 2445.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 294 K
  • 0.33 × 0.30 × 0.24 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.655, T max = 0.770
  • 10172 measured reflections
  • 2179 independent reflections
  • 2038 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.080
  • S = 1.18
  • 2179 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027147/bx2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027147/bx2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π–π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex with pyridine ligand has recently been prepared in the laboratory, and its crystal structure is reported here.

The molecule has site symmetry 2, the ZnII cation located on a twofold axis is coordinated by two hydroxypyridine ligands and two nitrobenzoate anions with a distorted tetrahedral geometry (Fig. 1 and Table 1). The O—Zn—O bond angle of 120.90 (9)° is much larger than the N—Zn—N bond angle of 101.72 (6)°. The partially overlapped arrangement of parallel pyridine rings is observed in the crystal structure (Fig. 2), the face-to-face separation of 3.594 (1) Å between N1-pyridine and N1ii-pyridine rings [symmetry code: (ii) 1 - x, 1 - y, -z] suggests the existence of π–π stacking between the parallel pyridine rings, similar to the situation found in catena-[(µ2-3,5-dinitro-2-oxybenzoato)(µ2-3-hydroxypyridine)- copper(II)] (Yan et al., 2008). Intermolecular O—H···O hydrogen bond between hydroxyl and carboxyl groups is also present in the crystal structure (Table 2).

Experimental

A water–ethanol solution (20 ml, 1:1) of 3-nitrobenzoic acid (0.17 g, 1 mmol), sodium carbonate (0.075 g, 0.7 mmol), 3-hydroxypyridine (0.19 g, 2 mmol) and zinc chloride (0.067 g, 0.5 mmol) was refluxed for 6 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 4 d.

Refinement

Hydroxy H atom was located in a difference Fourier map and was refined as riding in as-found relative position, Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and were refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, -z + 1/2].
Fig. 2.
The unit cell packing diagram of the title compound showing π–π stacking between pyridine rings. Dashed and dotted lines indicate hydrogen bonding and π–π stacking, respectively [symmetry code: (ii) 1 - ...

Crystal data

[Zn(C7H4NO4)2(C5H5NO)2]F(000) = 1200
Mr = 587.79Dx = 1.596 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2092 reflections
a = 22.992 (4) Åθ = 2.0–25.0°
b = 7.2412 (12) ŵ = 1.07 mm1
c = 15.797 (3) ÅT = 294 K
β = 111.584 (5)°Block, colourless
V = 2445.6 (8) Å30.33 × 0.30 × 0.24 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer2179 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.9°
ω scansh = −27→27
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −7→8
Tmin = 0.655, Tmax = 0.770l = −18→18
10172 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0461P)2 + 1.01P] where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.50000.60825 (4)0.25000.03308 (13)
N10.51519 (7)0.4295 (2)0.15973 (11)0.0353 (4)
N20.76573 (8)0.9962 (2)0.57621 (11)0.0428 (4)
O10.41195 (6)0.2005 (2)−0.04113 (10)0.0502 (4)
H1A0.41510.1741−0.09590.075*
O20.57415 (6)0.7413 (2)0.32834 (9)0.0430 (3)
O30.57500 (8)0.8529 (3)0.19867 (10)0.0582 (4)
O40.73267 (8)0.9305 (3)0.61402 (11)0.0597 (4)
O50.81810 (8)1.0587 (3)0.61763 (12)0.0639 (5)
C10.46440 (9)0.3618 (3)0.09435 (13)0.0376 (4)
H10.42560.38300.09830.045*
C20.46675 (9)0.2612 (3)0.02073 (12)0.0360 (4)
C30.52475 (9)0.2297 (3)0.01547 (13)0.0386 (4)
H30.52830.1659−0.03350.046*
C40.57718 (9)0.2956 (3)0.08477 (14)0.0442 (5)
H40.61660.27290.08340.053*
C50.57162 (9)0.3943 (3)0.15562 (14)0.0402 (5)
H50.60750.43770.20160.048*
C60.59870 (9)0.8367 (3)0.28242 (13)0.0376 (4)
C70.66049 (9)0.9261 (3)0.33534 (13)0.0341 (4)
C80.68297 (9)0.9269 (3)0.43004 (13)0.0341 (4)
H80.65900.87990.46130.041*
C90.74167 (9)0.9988 (3)0.47648 (12)0.0355 (4)
C100.77887 (9)1.0701 (3)0.43250 (15)0.0434 (5)
H100.81851.11680.46540.052*
C110.75552 (11)1.0701 (3)0.33837 (16)0.0491 (5)
H110.77951.11820.30730.059*
C120.69704 (10)0.9994 (3)0.29032 (14)0.0426 (5)
H120.68181.00060.22700.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.03108 (18)0.0418 (2)0.02401 (18)0.0000.00732 (12)0.000
N10.0354 (8)0.0405 (9)0.0294 (8)0.0019 (7)0.0112 (7)−0.0008 (6)
N20.0417 (9)0.0484 (11)0.0331 (9)0.0088 (8)0.0074 (8)−0.0057 (7)
O10.0417 (8)0.0636 (10)0.0403 (8)−0.0044 (7)0.0091 (6)−0.0163 (7)
O20.0361 (7)0.0557 (9)0.0345 (7)−0.0105 (6)0.0097 (6)−0.0003 (6)
O30.0593 (10)0.0789 (11)0.0279 (8)−0.0163 (8)0.0061 (7)−0.0030 (7)
O40.0613 (10)0.0864 (13)0.0321 (8)0.0003 (9)0.0181 (8)−0.0025 (8)
O50.0444 (9)0.0838 (12)0.0466 (9)−0.0016 (8)−0.0031 (7)−0.0135 (9)
C10.0326 (9)0.0459 (11)0.0346 (10)0.0012 (8)0.0128 (8)−0.0037 (8)
C20.0387 (10)0.0363 (10)0.0311 (9)−0.0001 (8)0.0107 (8)−0.0001 (8)
C30.0471 (11)0.0372 (10)0.0358 (10)0.0031 (8)0.0201 (9)−0.0017 (8)
C40.0369 (10)0.0519 (13)0.0477 (12)0.0064 (9)0.0203 (9)−0.0001 (10)
C50.0323 (9)0.0470 (12)0.0376 (11)0.0017 (8)0.0086 (8)−0.0014 (8)
C60.0374 (10)0.0423 (11)0.0313 (10)−0.0018 (8)0.0106 (8)−0.0048 (8)
C70.0366 (10)0.0374 (10)0.0292 (9)−0.0012 (8)0.0131 (8)−0.0014 (7)
C80.0339 (9)0.0399 (10)0.0310 (10)−0.0013 (8)0.0148 (8)−0.0011 (7)
C90.0359 (9)0.0382 (10)0.0310 (10)0.0033 (8)0.0106 (8)−0.0036 (8)
C100.0329 (10)0.0482 (12)0.0478 (12)−0.0067 (9)0.0133 (9)−0.0054 (9)
C110.0477 (12)0.0589 (14)0.0498 (13)−0.0082 (10)0.0287 (10)0.0030 (10)
C120.0491 (11)0.0501 (12)0.0322 (10)−0.0043 (9)0.0193 (9)0.0011 (9)

Geometric parameters (Å, °)

Zn—N12.0486 (16)C3—C41.381 (3)
Zn—N1i2.0486 (16)C3—H30.9300
Zn—O21.9527 (13)C4—C51.373 (3)
Zn—O2i1.9527 (13)C4—H40.9300
N1—C11.335 (2)C5—H50.9300
N1—C51.347 (3)C6—C71.504 (3)
N2—O41.223 (2)C7—C121.390 (3)
N2—O51.226 (2)C7—C81.392 (3)
N2—C91.465 (3)C8—C91.379 (3)
O1—C21.353 (2)C8—H80.9300
O1—H1A0.9147C9—C101.385 (3)
O2—C61.274 (2)C10—C111.383 (3)
O3—C61.237 (2)C10—H100.9300
C1—C21.390 (3)C11—C121.377 (3)
C1—H10.9300C11—H110.9300
C2—C31.385 (3)C12—H120.9300
O2—Zn—O2i120.90 (9)C3—C4—H4119.7
O2—Zn—N1114.84 (6)N1—C5—C4121.20 (18)
O2i—Zn—N1101.72 (6)N1—C5—H5119.4
O2—Zn—N1i101.72 (6)C4—C5—H5119.4
O2i—Zn—N1i114.84 (6)O3—C6—O2123.17 (18)
N1—Zn—N1i101.64 (9)O3—C6—C7120.52 (18)
C1—N1—C5118.48 (16)O2—C6—C7116.28 (16)
C1—N1—Zn116.48 (12)C12—C7—C8119.53 (18)
C5—N1—Zn124.53 (13)C12—C7—C6120.34 (17)
O4—N2—O5123.22 (18)C8—C7—C6120.03 (17)
O4—N2—C9118.26 (17)C9—C8—C7118.50 (17)
O5—N2—C9118.52 (18)C9—C8—H8120.8
C2—O1—H1A112.0C7—C8—H8120.8
C6—O2—Zn111.90 (12)C8—C9—C10122.55 (18)
N1—C1—C2123.20 (17)C8—C9—N2118.40 (17)
N1—C1—H1118.4C10—C9—N2119.04 (17)
C2—C1—H1118.4C11—C10—C9118.19 (19)
O1—C2—C3124.38 (17)C11—C10—H10120.9
O1—C2—C1117.54 (17)C9—C10—H10120.9
C3—C2—C1118.08 (17)C12—C11—C10120.46 (19)
C4—C3—C2118.33 (17)C12—C11—H11119.8
C4—C3—H3120.8C10—C11—H11119.8
C2—C3—H3120.8C11—C12—C7120.76 (19)
C5—C4—C3120.66 (18)C11—C12—H12119.6
C5—C4—H4119.7C7—C12—H12119.6
O2—Zn—N1—C1−168.19 (13)Zn—O2—C6—C7−172.72 (13)
O2i—Zn—N1—C1−35.82 (15)O3—C6—C7—C12−11.6 (3)
N1i—Zn—N1—C182.92 (14)O2—C6—C7—C12166.42 (19)
O2—Zn—N1—C53.54 (18)O3—C6—C7—C8171.9 (2)
O2i—Zn—N1—C5135.91 (16)O2—C6—C7—C8−10.1 (3)
N1i—Zn—N1—C5−105.36 (17)C12—C7—C8—C9−0.9 (3)
O2i—Zn—O2—C6−63.65 (13)C6—C7—C8—C9175.64 (17)
N1—Zn—O2—C658.89 (15)C7—C8—C9—C100.1 (3)
N1i—Zn—O2—C6167.73 (14)C7—C8—C9—N2−178.86 (17)
C5—N1—C1—C2−1.9 (3)O4—N2—C9—C80.0 (3)
Zn—N1—C1—C2170.31 (15)O5—N2—C9—C8179.42 (18)
N1—C1—C2—O1−179.81 (18)O4—N2—C9—C10−179.00 (19)
N1—C1—C2—C30.2 (3)O5—N2—C9—C100.4 (3)
O1—C2—C3—C4−178.31 (19)C8—C9—C10—C110.6 (3)
C1—C2—C3—C41.7 (3)N2—C9—C10—C11179.55 (19)
C2—C3—C4—C5−1.9 (3)C9—C10—C11—C12−0.5 (3)
C1—N1—C5—C41.8 (3)C10—C11—C12—C7−0.3 (3)
Zn—N1—C5—C4−169.79 (15)C8—C7—C12—C111.0 (3)
C3—C4—C5—N10.1 (3)C6—C7—C12—C11−175.53 (19)
Zn—O2—C6—O35.2 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.911.732.642 (2)174

Symmetry codes: (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2223).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]
  • Yan, J.-B., Song, W.-D., Wang, H. & Ji, L.-L. (2008). Acta Cryst. E64, m651–m652. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography