PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1944.
Published online 2009 July 22. doi:  10.1107/S1600536809027949
PMCID: PMC2977427

N′-[(E)-(5-Bromo-2-hydroxy­phen­yl)(phen­yl)methyl­idene]-4-chloro­benzo­hydrazide

Abstract

The Schiff base, C20H14BrClN2O2, displays a trans conformation with respect to the C=N double bond. The aromatic rings at either end of the –C(=O)–NH–N=C– fragment are nearly parallel [dihedral angle = 3.4 (5)°]. The hydr­oxy group forms an intra­molecular hydrogen bond to the imino N atom.

Related literature

The chemistry of aroylhydrazones continues to attract much attention due to their ability to coordinate to metal ions (Singh et al., 1982 [triangle]; Salem, 1998 [triangle]) and their biological activity (Singh et al., 1982 [triangle]; Carcelli et al., 1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1944-scheme1.jpg

Experimental

Crystal data

  • C20H14BrClN2O2
  • M r = 429.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1944-efi1.jpg
  • a = 7.3664 (8) Å
  • b = 10.6894 (11) Å
  • c = 12.3029 (14) Å
  • α = 71.976 (2)°
  • β = 82.228 (2)°
  • γ = 85.466 (2)°
  • V = 912.05 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.42 mm−1
  • T = 273 K
  • 0.20 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.644, T max = 0.744
  • 4841 measured reflections
  • 3189 independent reflections
  • 2467 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.085
  • S = 1.04
  • 3189 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1996 [triangle]); cell refinement: SAINT (Bruker, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027949/ng2613sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027949/ng2613Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Xi’an Polytechnic University (grant No. Y05–2–09).

supplementary crystallographic information

Comment

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives,the title compound, (I),was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C7=N1 double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···N hydrogen bonds (Table).

Experimental

4-chlorobenzohydrazide(0.02 mol,3.42 g) was dissolved in anhydrous ethanol (50 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.02 mol, 4.30 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol,0.68 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) =1.2Ueq(Caromatic,N).

Figures

Fig. 1.
The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C20H14BrClN2O2Z = 2
Mr = 429.69F(000) = 432
Triclinic, P1Dx = 1.565 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3664 (8) ÅCell parameters from 1806 reflections
b = 10.6894 (11) Åθ = 2.8–25.3°
c = 12.3029 (14) ŵ = 2.42 mm1
α = 71.976 (2)°T = 273 K
β = 82.228 (2)°Block, yellow
γ = 85.466 (2)°0.20 × 0.16 × 0.13 mm
V = 912.05 (17) Å3

Data collection

Bruker SMART area-detector diffractometer3189 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.644, Tmax = 0.744k = −8→12
4841 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0366P)2 + 0.3768P] where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.36717 (5)1.17236 (4)1.00467 (3)0.06975 (17)
Cl10.08513 (13)0.47987 (9)0.23226 (8)0.0729 (3)
O10.3069 (3)1.25145 (19)0.50596 (17)0.0627 (6)
H10.28821.18300.49310.094*
O20.2209 (3)1.0374 (2)0.33927 (17)0.0587 (6)
N10.2632 (3)1.0045 (2)0.55663 (18)0.0454 (6)
N20.2388 (3)0.9007 (2)0.51767 (19)0.0480 (6)
H20.23670.82150.56360.058*
C10.3457 (4)1.1936 (3)0.8483 (2)0.0465 (7)
C20.3209 (4)1.0858 (3)0.8134 (2)0.0432 (6)
H2A0.31411.00270.86730.052*
C30.3060 (3)1.0998 (2)0.6988 (2)0.0389 (6)
C40.3189 (4)1.2264 (3)0.6188 (2)0.0455 (7)
C50.3465 (4)1.3328 (3)0.6566 (3)0.0540 (8)
H50.35641.41630.60360.065*
C60.3595 (4)1.3169 (3)0.7695 (3)0.0534 (8)
H60.37751.38910.79320.064*
C70.2801 (4)0.9829 (3)0.6636 (2)0.0397 (6)
C80.2759 (4)0.8493 (2)0.7500 (2)0.0380 (6)
C90.4302 (4)0.7655 (3)0.7577 (2)0.0474 (7)
H90.53670.79200.70830.057*
C100.4261 (5)0.6424 (3)0.8389 (3)0.0544 (8)
H100.52960.58610.84330.065*
C110.2707 (5)0.6030 (3)0.9127 (3)0.0524 (8)
H110.26900.52060.96770.063*
C120.1173 (4)0.6854 (3)0.9054 (3)0.0534 (8)
H120.01170.65860.95570.064*
C130.1186 (4)0.8074 (3)0.8242 (2)0.0485 (7)
H130.01340.86200.81900.058*
C140.2180 (4)0.9262 (3)0.4043 (2)0.0415 (6)
C150.1925 (4)0.8100 (3)0.3660 (2)0.0394 (6)
C160.1873 (4)0.6816 (3)0.4374 (2)0.0548 (8)
H160.20200.66340.51470.066*
C170.1604 (5)0.5797 (3)0.3946 (3)0.0593 (8)
H170.16000.49310.44230.071*
C180.1345 (4)0.6076 (3)0.2821 (2)0.0480 (7)
C190.1422 (4)0.7332 (3)0.2085 (3)0.0555 (8)
H190.12750.75040.13120.067*
C200.1724 (4)0.8337 (3)0.2515 (2)0.0491 (7)
H200.17920.91930.20210.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0901 (3)0.0740 (3)0.0629 (2)0.00901 (19)−0.02581 (18)−0.04231 (19)
Cl10.0828 (6)0.0743 (6)0.0825 (6)−0.0160 (5)−0.0070 (5)−0.0520 (5)
O10.1015 (18)0.0392 (12)0.0457 (12)−0.0063 (12)−0.0087 (11)−0.0094 (9)
O20.0902 (16)0.0397 (12)0.0469 (12)−0.0099 (11)−0.0193 (11)−0.0075 (10)
N10.0639 (15)0.0360 (13)0.0407 (13)−0.0063 (11)−0.0108 (11)−0.0149 (10)
N20.0763 (17)0.0328 (13)0.0384 (12)−0.0087 (11)−0.0132 (11)−0.0115 (10)
C10.0478 (16)0.0488 (18)0.0520 (16)0.0021 (13)−0.0122 (13)−0.0270 (14)
C20.0476 (16)0.0391 (15)0.0463 (16)−0.0007 (12)−0.0086 (13)−0.0167 (13)
C30.0420 (15)0.0330 (14)0.0442 (15)−0.0023 (11)−0.0072 (12)−0.0144 (12)
C40.0516 (17)0.0392 (16)0.0470 (17)−0.0034 (13)−0.0054 (13)−0.0149 (13)
C50.068 (2)0.0306 (15)0.0629 (19)−0.0036 (14)−0.0084 (16)−0.0122 (14)
C60.0555 (18)0.0443 (18)0.072 (2)−0.0012 (14)−0.0137 (15)−0.0313 (16)
C70.0448 (15)0.0379 (15)0.0390 (15)−0.0021 (12)−0.0059 (12)−0.0150 (12)
C80.0512 (16)0.0305 (14)0.0368 (14)−0.0066 (12)−0.0078 (12)−0.0143 (11)
C90.0522 (18)0.0433 (17)0.0482 (16)−0.0037 (14)−0.0039 (13)−0.0161 (13)
C100.064 (2)0.0395 (17)0.0618 (19)0.0082 (15)−0.0187 (17)−0.0169 (15)
C110.077 (2)0.0326 (16)0.0472 (17)−0.0099 (15)−0.0152 (16)−0.0066 (13)
C120.063 (2)0.0460 (18)0.0503 (17)−0.0166 (16)−0.0007 (15)−0.0128 (14)
C130.0518 (18)0.0431 (17)0.0523 (17)−0.0014 (13)−0.0086 (14)−0.0158 (14)
C140.0458 (16)0.0412 (17)0.0382 (15)−0.0038 (12)−0.0082 (12)−0.0109 (13)
C150.0433 (15)0.0388 (15)0.0380 (14)−0.0041 (12)−0.0084 (12)−0.0122 (12)
C160.083 (2)0.0445 (17)0.0403 (16)−0.0140 (15)−0.0156 (15)−0.0112 (13)
C170.084 (2)0.0423 (17)0.0538 (19)−0.0151 (16)−0.0114 (17)−0.0132 (14)
C180.0465 (16)0.0549 (19)0.0530 (17)−0.0078 (14)−0.0055 (13)−0.0300 (15)
C190.069 (2)0.064 (2)0.0417 (16)−0.0029 (16)−0.0131 (14)−0.0250 (15)
C200.0633 (19)0.0458 (17)0.0373 (15)−0.0027 (14)−0.0085 (13)−0.0102 (13)

Geometric parameters (Å, °)

Br1—C11.893 (3)C8—C131.386 (4)
Cl1—C181.740 (3)C9—C101.384 (4)
O1—C41.344 (3)C9—H90.9300
O1—H10.8200C10—C111.368 (4)
O2—C141.210 (3)C10—H100.9300
N1—C71.285 (3)C11—C121.372 (4)
N1—N21.370 (3)C11—H110.9300
N2—C141.364 (3)C12—C131.376 (4)
N2—H20.8600C12—H120.9300
C1—C61.375 (4)C13—H130.9300
C1—C21.380 (4)C14—C151.491 (4)
C2—C31.390 (4)C15—C201.378 (4)
C2—H2A0.9300C15—C161.382 (4)
C3—C41.407 (4)C16—C171.385 (4)
C3—C71.476 (3)C16—H160.9300
C4—C51.392 (4)C17—C181.359 (4)
C5—C61.363 (4)C17—H170.9300
C5—H50.9300C18—C191.368 (4)
C6—H60.9300C19—C201.381 (4)
C7—C81.493 (4)C19—H190.9300
C8—C91.385 (4)C20—H200.9300
C4—O1—H1109.5C11—C10—H10119.8
C7—N1—N2119.3 (2)C9—C10—H10119.8
C14—N2—N1118.3 (2)C10—C11—C12119.8 (3)
C14—N2—H2120.8C10—C11—H11120.1
N1—N2—H2120.8C12—C11—H11120.1
C6—C1—C2120.4 (3)C11—C12—C13120.4 (3)
C6—C1—Br1119.3 (2)C11—C12—H12119.8
C2—C1—Br1120.2 (2)C13—C12—H12119.8
C1—C2—C3120.9 (3)C12—C13—C8120.4 (3)
C1—C2—H2A119.6C12—C13—H13119.8
C3—C2—H2A119.6C8—C13—H13119.8
C2—C3—C4118.4 (2)O2—C14—N2121.2 (2)
C2—C3—C7119.9 (2)O2—C14—C15122.5 (2)
C4—C3—C7121.8 (2)N2—C14—C15116.3 (2)
O1—C4—C5117.2 (2)C20—C15—C16118.5 (3)
O1—C4—C3123.5 (2)C20—C15—C14117.1 (2)
C5—C4—C3119.3 (3)C16—C15—C14124.4 (2)
C6—C5—C4121.3 (3)C15—C16—C17120.5 (3)
C6—C5—H5119.3C15—C16—H16119.8
C4—C5—H5119.3C17—C16—H16119.8
C5—C6—C1119.7 (3)C18—C17—C16119.3 (3)
C5—C6—H6120.2C18—C17—H17120.4
C1—C6—H6120.2C16—C17—H17120.4
N1—C7—C3116.0 (2)C17—C18—C19121.8 (3)
N1—C7—C8123.7 (2)C17—C18—Cl1118.7 (2)
C3—C7—C8120.2 (2)C19—C18—Cl1119.5 (2)
C9—C8—C13118.9 (2)C18—C19—C20118.4 (3)
C9—C8—C7120.4 (2)C18—C19—H19120.8
C13—C8—C7120.7 (2)C20—C19—H19120.8
C10—C9—C8120.1 (3)C15—C20—C19121.5 (3)
C10—C9—H9120.0C15—C20—H20119.2
C8—C9—H9120.0C19—C20—H20119.2
C11—C10—C9120.4 (3)
C7—N1—N2—C14178.9 (2)C13—C8—C9—C10−0.3 (4)
C6—C1—C2—C3−1.2 (4)C7—C8—C9—C10179.2 (3)
Br1—C1—C2—C3−179.6 (2)C8—C9—C10—C11−0.6 (4)
C1—C2—C3—C40.7 (4)C9—C10—C11—C120.7 (4)
C1—C2—C3—C7179.8 (2)C10—C11—C12—C130.1 (4)
C2—C3—C4—O1179.8 (3)C11—C12—C13—C8−1.0 (4)
C7—C3—C4—O10.8 (4)C9—C8—C13—C121.1 (4)
C2—C3—C4—C50.2 (4)C7—C8—C13—C12−178.4 (3)
C7—C3—C4—C5−178.9 (3)N1—N2—C14—O20.0 (4)
O1—C4—C5—C6179.7 (3)N1—N2—C14—C15179.8 (2)
C3—C4—C5—C6−0.7 (4)O2—C14—C15—C200.2 (4)
C4—C5—C6—C10.2 (5)N2—C14—C15—C20−179.6 (2)
C2—C1—C6—C50.7 (4)O2—C14—C15—C16−179.6 (3)
Br1—C1—C6—C5179.2 (2)N2—C14—C15—C160.5 (4)
N2—N1—C7—C3180.0 (2)C20—C15—C16—C17−0.7 (5)
N2—N1—C7—C80.4 (4)C14—C15—C16—C17179.1 (3)
C2—C3—C7—N1178.4 (2)C15—C16—C17—C18−1.6 (5)
C4—C3—C7—N1−2.5 (4)C16—C17—C18—C192.9 (5)
C2—C3—C7—C8−2.0 (4)C16—C17—C18—Cl1−175.6 (2)
C4—C3—C7—C8177.1 (2)C17—C18—C19—C20−1.7 (5)
N1—C7—C8—C979.9 (3)Cl1—C18—C19—C20176.7 (2)
C3—C7—C8—C9−99.7 (3)C16—C15—C20—C191.9 (4)
N1—C7—C8—C13−100.6 (3)C14—C15—C20—C19−177.9 (3)
C3—C7—C8—C1379.9 (3)C18—C19—C20—C15−0.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.554 (3)145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2613).

References

  • Bruker (1996). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem.57, 43–62. [PubMed]
  • Salem, A. A. (1998). Microchem. J.60, 51–66.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography