PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m846.
Published online 2009 July 1. doi:  10.1107/S1600536809024258
PMCID: PMC2977425

catena-Poly[[diaqua­nickel(II)]-bis­(μ-pyridine-4-sulfinato)-κ2 N,O2 O,N]

Abstract

In the title coordination polymer, [Ni(C5H4NO2S)2(H2O)2]n, the NiII ion is located on an inversion centre and is octa­hedrally coordinated by two N and two O atoms of four symmetry-related and deprotonated pyridine-4-sulfinate (ps) ligands together with two water mol­ecules in axial positions. The ps anions, acting as μ2-bridging ligands, link neighbouring NiII ions into a chain structure along the c axis. These polymeric chains are extended into a three-dimensional framework via inter­molecular O—H(...)O hydrogen bonds with participation of the water mol­ecules.

Related literature

For metal complexes derived from pyridine-4-sulfonic acid, see: Lü et al. (2007 [triangle]); Leslie & George (2005a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m846-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H4NO2S)2(H2O)2]
  • M r = 379.05
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m846-efi1.jpg
  • a = 6.403 (5) Å
  • b = 7.309 (5) Å
  • c = 7.602 (5) Å
  • α = 96.784 (8)°
  • β = 95.140 (8)°
  • γ = 107.709 (8)°
  • V = 333.6 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.80 mm−1
  • T = 296 K
  • 0.25 × 0.17 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.662, T max = 0.787
  • 2417 measured reflections
  • 1180 independent reflections
  • 1043 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.00
  • 1180 reflections
  • 97 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024258/at2818sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024258/at2818Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 20771054).

supplementary crystallographic information

Comment

It is well known that sulfinic acid is not stable compared with sulfonic acid, so it is much difficult to obtain complexes of sulfinic acid as they are easy to be oxidized. In the previous literatures, several metal complexes derived from pyridine-4-sulfonic acid have been reported (Leslie & George, 2005a,b; Lü et al., 2007), whereas the complexes of pyridine-4-sulfinic acid has been not seen so far. Here we describe a nickel(II) complex from pyridine-4-sulfinic acid, (I), (Fig. 1).

The NiII ion locates on a centre of symmetry and is in a distorted octahedral geometry with two water ligands in axial trans positions and two N and two O atoms of four symmetry-related ps- ligands in equatorial plane (Table 1). Each ps- ligand connects two NiII ions and thus forms one-dimensional chain structure along c axis (Fig.2), with adjacent Ni···Ni separation distance of 7.602 (3) Å.

Water molecules take part in hydrogen bonds as double donor, and S═O of ps- ligands acts only as a single acceptor (Table 2, Fig.3). Hydrogen bonds interactions stabilizes and extends chain structure of (I) into a three-dimensional network.

Experimental

A solution of NiCl2. 6H2O (1 mmol, 0.238 g) in anhydrous ethanol (10 ml) was injected dropwise into a solution of Hps (2 mol, 0.286 g) in methanol (15 ml) under argon. The resulting mixture was stirred at 343 K for 4 h, then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Green block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 17%. Analysis, found: C 31.58, H 3.11, N 7.45, S 16.93%; C10H12N2NiO6S2 requires: C 31.66, H 3.17, N 7.39, S 16.88%.

Refinement

H atoms bonded to C were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C). The O—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The coordination environment of NiII ion in (I).Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) (1 - x, -y, 2 - z);(B) (x, y, 1 + z); (C) (1 - x, -y, 1 - z).
Fig. 2.
The chain structure of (I) along c axis. H atoms on C atoms have been omitted.
Fig. 3.
Packing diagram for (1), showing hydrogen bonds as dashed lines in ab plane. H atoms on C have been deleted.

Crystal data

[Ni(C5H4NO2S)2(H2O)2]Z = 1
Mr = 379.05F(000) = 194
Triclinic, P1Dx = 1.887 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.403 (5) ÅCell parameters from 1414 reflections
b = 7.309 (5) Åθ = 2.7–27.9°
c = 7.602 (5) ŵ = 1.80 mm1
α = 96.784 (8)°T = 296 K
β = 95.140 (8)°Block, green
γ = 107.709 (8)°0.25 × 0.17 × 0.14 mm
V = 333.6 (4) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer1180 independent reflections
Radiation source: fine-focus sealed tube1043 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.662, Tmax = 0.787k = −8→8
2417 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0581P)2] where P = (Fo2 + 2Fc2)/3
1180 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.00001.00000.02196 (18)
S10.37032 (11)0.32818 (9)0.81172 (8)0.0282 (2)
O10.1697 (3)−0.2599 (3)0.9900 (3)0.0432 (5)
H1W0.1594−0.35950.91900.065*
H2W0.0660−0.28441.05220.065*
O20.1653 (3)0.3862 (3)0.7920 (3)0.0374 (5)
O30.3059 (3)0.1287 (3)0.8709 (2)0.0330 (4)
N10.4591 (3)0.1289 (3)0.2369 (3)0.0257 (5)
C10.2579 (4)0.1289 (4)0.2770 (4)0.0306 (6)
H10.13770.08410.18730.037*
C20.2257 (5)0.1933 (4)0.4472 (4)0.0320 (6)
H20.08570.19200.47210.038*
C30.4053 (4)0.2601 (3)0.5805 (3)0.0250 (5)
C40.6131 (4)0.2690 (4)0.5387 (3)0.0271 (6)
H40.73700.31910.62470.033*
C50.6316 (4)0.2014 (4)0.3656 (4)0.0304 (6)
H50.77130.20660.33690.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0291 (3)0.0292 (3)0.0131 (2)0.0168 (2)0.00585 (17)0.00249 (17)
S10.0353 (4)0.0309 (4)0.0215 (4)0.0151 (3)0.0082 (3)0.0004 (3)
O10.0457 (12)0.0320 (11)0.0528 (13)0.0108 (9)0.0236 (10)0.0015 (9)
O20.0473 (12)0.0441 (11)0.0339 (11)0.0299 (10)0.0164 (9)0.0075 (9)
O30.0414 (11)0.0401 (10)0.0251 (9)0.0212 (9)0.0098 (8)0.0081 (8)
N10.0288 (11)0.0309 (11)0.0210 (11)0.0141 (9)0.0055 (8)0.0047 (9)
C10.0284 (13)0.0412 (15)0.0254 (14)0.0162 (11)0.0033 (11)0.0040 (11)
C20.0277 (13)0.0435 (15)0.0299 (15)0.0176 (12)0.0089 (11)0.0047 (12)
C30.0328 (13)0.0246 (12)0.0217 (13)0.0134 (10)0.0079 (10)0.0047 (10)
C40.0271 (13)0.0327 (13)0.0217 (13)0.0106 (11)0.0036 (10)0.0015 (10)
C50.0304 (14)0.0377 (15)0.0275 (15)0.0160 (12)0.0084 (11)0.0053 (11)

Geometric parameters (Å, °)

Ni1—N1i2.008 (2)N1—C51.336 (4)
Ni1—N1ii2.008 (2)N1—C11.350 (3)
Ni1—O3iii2.026 (2)N1—Ni1iv2.008 (2)
Ni1—O32.026 (2)C1—C21.379 (4)
Ni1—O1iii2.362 (2)C1—H10.9300
Ni1—O12.362 (2)C2—C31.386 (4)
S1—O21.498 (2)C2—H20.9300
S1—O31.523 (2)C3—C41.380 (4)
S1—C31.821 (3)C4—C51.378 (4)
O1—H1W0.8350C4—H40.9300
O1—H2W0.8371C5—H50.9300
N1i—Ni1—N1ii180.000 (1)H1W—O1—H2W109.3
N1i—Ni1—O3iii90.55 (9)S1—O3—Ni1128.93 (12)
N1ii—Ni1—O3iii89.45 (9)C5—N1—C1118.2 (2)
N1i—Ni1—O389.45 (9)C5—N1—Ni1iv119.50 (18)
N1ii—Ni1—O390.55 (9)C1—N1—Ni1iv121.99 (18)
O3iii—Ni1—O3180.000 (1)N1—C1—C2121.9 (2)
N1i—Ni1—O1iii92.01 (8)N1—C1—H1119.1
N1ii—Ni1—O1iii87.99 (8)C2—C1—H1119.1
O3iii—Ni1—O1iii85.24 (9)C1—C2—C3118.9 (2)
O3—Ni1—O1iii94.76 (9)C1—C2—H2120.5
N1i—Ni1—O187.99 (8)C3—C2—H2120.5
N1ii—Ni1—O192.01 (8)C4—C3—C2119.5 (2)
O3iii—Ni1—O194.76 (9)C4—C3—S1119.35 (19)
O3—Ni1—O185.24 (9)C2—C3—S1121.1 (2)
O1iii—Ni1—O1180.0C3—C4—C5118.0 (2)
O2—S1—O3107.19 (12)C3—C4—H4121.0
O2—S1—C3102.55 (12)C5—C4—H4121.0
O3—S1—C399.77 (11)N1—C5—C4123.3 (2)
Ni1—O1—H1W114.8N1—C5—H5118.3
Ni1—O1—H2W135.0C4—C5—H5118.3
O2—S1—O3—Ni1−157.49 (13)C1—C2—C3—S1−174.8 (2)
C3—S1—O3—Ni196.00 (15)O2—S1—C3—C4155.44 (19)
N1i—Ni1—O3—S1−93.25 (15)O3—S1—C3—C4−94.3 (2)
N1ii—Ni1—O3—S186.75 (15)O2—S1—C3—C2−26.8 (2)
O1iii—Ni1—O3—S1−1.28 (15)O3—S1—C3—C283.4 (2)
O1—Ni1—O3—S1178.72 (15)C2—C3—C4—C5−3.1 (4)
C5—N1—C1—C2−2.8 (4)S1—C3—C4—C5174.71 (19)
Ni1iv—N1—C1—C2170.9 (2)C1—N1—C5—C42.7 (4)
N1—C1—C2—C30.1 (4)Ni1iv—N1—C5—C4−171.20 (19)
C1—C2—C3—C42.9 (4)C3—C4—C5—N10.3 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z+1; (iii) −x+1, −y, −z+2; (iv) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1W···O2v0.842.002.826 (3)168
O1—H2W···O2vi0.842.002.827 (3)169

Symmetry codes: (v) x, y−1, z; (vi) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2818).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Leslie, J. M. & George, K. H. S. (2005a). Chem. Commun. pp. 1270–1272. [PubMed]
  • Leslie, J. M. & George, K. H. S. (2005b). Chem. Mater. 17, 217–220.
  • Lü, J., Li, H.-F., Xiao, F.-X. & Cao, R. (2007). Inorg. Chem. Commun.10, 614–617.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography