PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1927.
Published online 2009 July 18. doi:  10.1107/S1600536809026531
PMCID: PMC2977422

1,15:21,35-Bis(oxydiethyl­ene)-5,8,11,18,25,28,31,38-octa­oxa-1,15,21,35-tetra­azacyclo­tetra­decane-16,20,36,40-tetra­one–benzene (1/2): a macrotricyclic tetra­lactam

Abstract

The macrotricyclic title compound, C36H64N4O14·2C6H6, is located on a crystallographic center of symmetry. The mol­ecule has four tertiary amide bridgehead atoms and consists of two unsymmetrical 20-membered diaza­tetra­oxamacrocycles (N2O4 donor atom set) connected through the N atoms by two lateral oxydiethyl­ene bridges. The bridging subunits, together with the short bridging strand (NCCOCCN) from each monocycle, define a 24-membered ring (N4O4 donor atom set) that forms a central cavity.

Related literature

For general background to macrotricyclic ligands as receptors for cationic, anionic and neutral guests, see: Lehn (1973 [triangle], 1988 [triangle]); Lehn et al. (1977 [triangle]). For related structures, see: Wiest & Weiss (1973 [triangle]); Fischer et al. (1977 [triangle]); Pascard et al. (1982 [triangle]); Rebizant et al. (1984 [triangle]); Groth (1986 [triangle]); Cheetham & Harding (1991 [triangle]); Bencini et al. (1992 [triangle]); Krakowiak et al. (1995 [triangle]); Plenio & Diodone (1995 [triangle]); Smith et al. (2007 [triangle]). For the synthesis, see: Dietrich et al. (1973 [triangle]); Cheney et al. (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1927-scheme1.jpg

Experimental

Crystal data

  • C36H64N4O14·2C6H6
  • M r = 933.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1927-efi1.jpg
  • a = 8.9632 (14) Å
  • b = 11.988 (2) Å
  • c = 12.806 (2) Å
  • α = 72.728 (5)°
  • β = 71.758 (5)°
  • γ = 68.443 (6)°
  • V = 1189.4 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.41 × 0.37 × 0.30 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.954, T max = 0.978
  • 9363 measured reflections
  • 4603 independent reflections
  • 4198 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.089
  • S = 1.00
  • 4603 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026531/pk2175sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026531/pk2175Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR06–113). The authors also thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

supplementary crystallographic information

Comment

Macrotricyclic ligands are of interest as receptors for cationic, anionic and neutral guests (Lehn et al., 1977; Lehn, 1988). The title compound (I) was isolated as the 2 + 2 addition product during the synthesis of the corresponding bicyclic cryptand 3pp1.1. A related macrotricyclic tetraamine has been reported, but with the propylene groups in (I) replaced by benzene rings (Smith et al., 2007). Fig. 1 shows that (I) contains three monocyclic rings: a 24-membered ring, B (N1/O4/N7/O24A/N1A/O4A/N7A/O24) and two 20-membered rings, A (N1/O4/N7/O11/O14/O17) and C (N1A/O4A/N7A/O11A/O14A/O17A). The two 20-membered macrocyclic rings form the ends of the skewed cylinder with two oxydiethylene bridges linking the macrocylic end groups. Each of the 20-membered rings (A and C) has an elliptical shape, with non-bonding distances of 4.495 (2)Å (N1···O11), 6.639 (2)Å (O4···O14), and 7.209 (2)Å (N7···O17). The planes defined by donor atoms (N1/N7/O11/O14/O17) of rings A (and C) (average deviation = 0.1796 Å) are parallel, and form a dihedral angle of 100.7 (2)° with the plane defined by the nitrogen donor atoms in ring B. Thus, the centers of rings A and C do not overlap in the direction defined by the O4···O14 axis. The two 20-membered rings are oriented in an opposing fashion with respect to the plane defined by the N donor atoms in ring B. Similar behavior has been seen with other cylindrical tricyclic cryptands having unsymmetric end groups. (Groth, 1986; Cheetham & Harding, 1991; Plenio & Diodone, 1995). Fig. 2 shows that the nitrogen atoms in the 24-membered ring form the corners of a parallelogram defined by the following non-bonding distances and angles: 4.300 (2)Å (N1···N7); 6.901 (2)Å (N7···N1A); 74.0 (2)° (N1···N7···N1A); 106.0 (2)° (N7···N1···N7A). As a result, the 20-membered rings are also offset along the O24···O24A axis. Analogous macrotricyclic compounds also exhibit a skewed cylindrical shape (Bencini et al., 1992; Pascard et al., 1982; Rebizant et al., 1984: Smith et al., 2007).

Experimental

The 20-membered monocyclic diamine was prepared according to reported methods (Dietrich et al., 1973). The tricyclic tetralactam was obtained as the 2 + 2 cycloaddition product from the reaction of 1,7-diaza-4,11,14,17-tetraoxacycloicosane (3.56 mmole) in 150 ml toluene and 2,2'-oxydiacetyl chloride (3.54 mmole) in 150 ml toluene. These solutions were added synchronously to 800 ml of toluene containing triethylamine (7.80 mmole) over a period of 2 h under high-dilution conditions (Dietrich et al., 1973; Cheney et al., 1978). The crude tetralactam was purified by recrystallization from benzene to give (I) in 10% overall yield. ESI-MS: m/z = 799.5 (M + Na+). Crystals suitable for X-ray crystallography were grown by vapor diffusion of heptane into a solution of (I) in benzene.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99Å for RCH2R and 0.95Å for H atoms in the aromatic solvent; Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by (1-x, 1-y, 1-z).
Fig. 2.
A view of the molecular structure of (I), along an axis perpendicular to the plane defined by the donor atoms of the 24-membered ring (B). Atoms marked with the letter A are related to unsubscripted atoms by (1-x, 1-y, 1-z). H atoms have been omitted ...

Crystal data

C36H64N4O14·2C6H6Z = 1
Mr = 933.13F(000) = 504
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9632 (14) ÅCell parameters from 7833 reflections
b = 11.988 (2) Åθ = 2.3–28.3°
c = 12.806 (2) ŵ = 0.10 mm1
α = 72.728 (5)°T = 100 K
β = 71.758 (5)°Block, colorless
γ = 68.443 (6)°0.41 × 0.37 × 0.30 mm
V = 1189.4 (3) Å3

Data collection

Bruker APEX CCD diffractometer4603 independent reflections
Radiation source: fine-focus sealed tube4198 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −11→11
Tmin = 0.954, Tmax = 0.978k = −14→13
9363 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089w = 1/[σ2(Fo2) + (0.04P)2 + 0.42P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4603 reflectionsΔρmax = 0.27 e Å3
299 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0145 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.47767 (12)0.74664 (8)0.56224 (8)0.0167 (2)
C20.53952 (14)0.83074 (10)0.46324 (9)0.0186 (2)
H2A0.65670.79000.43170.022*
H2B0.53410.90390.48680.022*
C30.44488 (14)0.87172 (10)0.37224 (9)0.0188 (2)
H3A0.50760.91090.30150.023*
H3B0.43030.79980.35850.023*
O40.28675 (10)0.95714 (7)0.40616 (7)0.02112 (19)
C50.18854 (16)0.99679 (11)0.32485 (10)0.0224 (3)
H5A0.26140.98270.25080.027*
H5B0.13171.08590.31760.027*
C60.06115 (15)0.92948 (11)0.35714 (10)0.0217 (3)
H6A−0.01560.94790.42890.026*
H6B−0.00370.96050.29890.026*
N70.13369 (12)0.79611 (9)0.36959 (8)0.0176 (2)
C80.12705 (14)0.72108 (11)0.48393 (9)0.0179 (2)
H8A0.15070.76260.53040.021*
H8B0.21390.64120.48090.021*
C9−0.03960 (14)0.69865 (11)0.53976 (9)0.0208 (3)
H9A−0.12610.77800.54700.025*
H9B−0.06630.66050.49190.025*
C10−0.03863 (15)0.61574 (11)0.65499 (10)0.0215 (3)
H10A−0.14870.60430.69040.026*
H10B0.04290.53440.64790.026*
O110.00290 (10)0.66990 (7)0.72305 (6)0.02062 (19)
C12−0.04284 (15)0.61758 (12)0.83951 (9)0.0228 (3)
H12A−0.00260.52710.85090.027*
H12B−0.16450.64290.86510.027*
C130.02910 (15)0.65877 (12)0.90752 (10)0.0236 (3)
H13A0.02660.74530.87570.028*
H13B−0.03680.65290.98600.028*
O140.19488 (10)0.58292 (8)0.90553 (7)0.0235 (2)
C150.26383 (16)0.59898 (12)0.98450 (10)0.0256 (3)
H15A0.35440.52381.00250.031*
H15B0.17820.60971.05480.031*
C160.32977 (16)0.70713 (12)0.94297 (10)0.0254 (3)
H16A0.24250.78260.92040.031*
H16B0.36610.71861.00350.031*
O170.46530 (10)0.68442 (8)0.84922 (7)0.0226 (2)
C180.50076 (16)0.79286 (12)0.77925 (10)0.0247 (3)
H18A0.60990.76980.72720.030*
H18B0.50700.84210.82670.030*
C190.37289 (16)0.87074 (11)0.71125 (10)0.0235 (3)
H19A0.41240.93820.65750.028*
H19B0.26970.90810.76280.028*
C200.33413 (14)0.80088 (10)0.64589 (9)0.0177 (2)
H20A0.29150.73480.69960.021*
H20B0.24610.85760.60720.021*
C210.54820 (14)0.62431 (10)0.56542 (9)0.0159 (2)
O220.66849 (10)0.58351 (7)0.49363 (6)0.01991 (19)
C230.46919 (14)0.53806 (10)0.66279 (9)0.0180 (2)
H23A0.45370.56100.73450.022*
H23B0.35930.54720.65370.022*
O240.56807 (9)0.41414 (7)0.66696 (6)0.01685 (18)
C250.70820 (14)0.38705 (10)0.71013 (9)0.0184 (2)
H25A0.67410.41190.78330.022*
H25B0.78470.43190.65740.022*
C260.79233 (13)0.24948 (10)0.72452 (9)0.0166 (2)
O270.79022 (10)0.18395 (7)0.81918 (6)0.02115 (19)
C1S0.23336 (16)0.07749 (12)0.97250 (11)0.0275 (3)
H1S0.22650.00581.02850.033*
C2S0.13507 (16)0.12252 (12)0.89521 (10)0.0258 (3)
H2S0.05910.08240.89890.031*
C3S0.14782 (15)0.22620 (12)0.81243 (10)0.0253 (3)
H3S0.08090.25660.75930.030*
C4S0.25741 (15)0.28561 (12)0.80677 (10)0.0252 (3)
H4S0.26650.35600.74950.030*
C5S0.35382 (15)0.24199 (12)0.88490 (11)0.0257 (3)
H5S0.42790.28330.88200.031*
C6S0.34207 (16)0.13823 (12)0.96721 (11)0.0273 (3)
H6S0.40870.10831.02040.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0211 (5)0.0133 (5)0.0153 (4)−0.0056 (4)−0.0043 (4)−0.0019 (4)
C20.0237 (6)0.0147 (5)0.0178 (5)−0.0080 (5)−0.0051 (4)−0.0009 (4)
C30.0229 (6)0.0154 (5)0.0176 (5)−0.0050 (5)−0.0048 (4)−0.0034 (4)
O40.0265 (4)0.0169 (4)0.0188 (4)−0.0007 (3)−0.0096 (3)−0.0049 (3)
C50.0309 (7)0.0144 (6)0.0202 (6)−0.0014 (5)−0.0122 (5)−0.0013 (4)
C60.0238 (6)0.0173 (6)0.0207 (6)0.0020 (5)−0.0092 (5)−0.0054 (5)
N70.0191 (5)0.0153 (5)0.0165 (5)−0.0014 (4)−0.0066 (4)−0.0027 (4)
C80.0190 (6)0.0196 (6)0.0149 (5)−0.0045 (5)−0.0059 (4)−0.0030 (4)
C90.0199 (6)0.0238 (6)0.0203 (6)−0.0058 (5)−0.0070 (5)−0.0056 (5)
C100.0228 (6)0.0219 (6)0.0224 (6)−0.0096 (5)−0.0046 (5)−0.0053 (5)
O110.0266 (4)0.0225 (4)0.0148 (4)−0.0122 (4)−0.0041 (3)−0.0017 (3)
C120.0212 (6)0.0262 (6)0.0169 (6)−0.0085 (5)−0.0020 (4)0.0006 (5)
C130.0221 (6)0.0262 (6)0.0168 (5)−0.0020 (5)−0.0028 (5)−0.0047 (5)
O140.0207 (4)0.0255 (5)0.0236 (4)−0.0031 (4)−0.0064 (3)−0.0075 (4)
C150.0279 (7)0.0303 (7)0.0184 (6)−0.0102 (5)−0.0079 (5)−0.0005 (5)
C160.0303 (7)0.0304 (7)0.0164 (6)−0.0111 (5)−0.0030 (5)−0.0062 (5)
O170.0236 (4)0.0240 (5)0.0183 (4)−0.0061 (4)−0.0051 (3)−0.0026 (3)
C180.0294 (7)0.0307 (7)0.0198 (6)−0.0161 (5)−0.0047 (5)−0.0056 (5)
C190.0367 (7)0.0159 (6)0.0181 (6)−0.0090 (5)−0.0057 (5)−0.0034 (4)
C200.0205 (6)0.0139 (5)0.0165 (5)−0.0020 (4)−0.0050 (4)−0.0031 (4)
C210.0190 (6)0.0151 (5)0.0154 (5)−0.0044 (4)−0.0071 (4)−0.0031 (4)
O220.0209 (4)0.0173 (4)0.0186 (4)−0.0047 (3)−0.0017 (3)−0.0038 (3)
C230.0179 (6)0.0128 (5)0.0200 (5)−0.0026 (4)−0.0027 (4)−0.0032 (4)
O240.0179 (4)0.0119 (4)0.0206 (4)−0.0031 (3)−0.0066 (3)−0.0027 (3)
C250.0217 (6)0.0172 (6)0.0181 (5)−0.0054 (5)−0.0076 (4)−0.0039 (4)
C260.0160 (5)0.0174 (6)0.0185 (5)−0.0051 (4)−0.0074 (4)−0.0028 (4)
O270.0256 (4)0.0196 (4)0.0169 (4)−0.0050 (3)−0.0081 (3)−0.0009 (3)
C1S0.0335 (7)0.0196 (6)0.0252 (6)−0.0047 (5)−0.0063 (5)−0.0032 (5)
C2S0.0256 (6)0.0269 (7)0.0273 (6)−0.0102 (5)−0.0033 (5)−0.0092 (5)
C3S0.0212 (6)0.0309 (7)0.0215 (6)−0.0039 (5)−0.0061 (5)−0.0060 (5)
C4S0.0230 (6)0.0242 (6)0.0227 (6)−0.0059 (5)−0.0008 (5)−0.0029 (5)
C5S0.0193 (6)0.0302 (7)0.0291 (6)−0.0077 (5)−0.0013 (5)−0.0125 (5)
C6S0.0246 (6)0.0299 (7)0.0256 (6)0.0006 (5)−0.0104 (5)−0.0096 (5)

Geometric parameters (Å, °)

N1—C211.3606 (15)C15—H15B0.9900
N1—C21.4639 (14)C16—O171.4245 (14)
N1—C201.4702 (14)C16—H16A0.9900
C2—C31.5137 (15)C16—H16B0.9900
C2—H2A0.9900O17—C181.4240 (14)
C2—H2B0.9900C18—C191.5163 (18)
C3—O41.4347 (14)C18—H18A0.9900
C3—H3A0.9900C18—H18B0.9900
C3—H3B0.9900C19—C201.5281 (16)
O4—C51.4344 (14)C19—H19A0.9900
C5—C61.5196 (18)C19—H19B0.9900
C5—H5A0.9900C20—H20A0.9900
C5—H5B0.9900C20—H20B0.9900
C6—N71.4677 (15)C21—O221.2272 (14)
C6—H6A0.9900C21—C231.5314 (15)
C6—H6B0.9900C23—O241.4178 (13)
N7—C26i1.3473 (15)C23—H23A0.9900
N7—C81.4695 (14)C23—H23B0.9900
C8—C91.5254 (16)O24—C251.4202 (13)
C8—H8A0.9900C25—C261.5216 (16)
C8—H8B0.9900C25—H25A0.9900
C9—C101.5153 (16)C25—H25B0.9900
C9—H9A0.9900C26—O271.2321 (14)
C9—H9B0.9900C26—N7i1.3473 (15)
C10—O111.4270 (14)C1S—C2S1.3879 (18)
C10—H10A0.9900C1S—C6S1.3910 (19)
C10—H10B0.9900C1S—H1S0.9500
O11—C121.4271 (13)C2S—C3S1.3884 (18)
C12—C131.5030 (17)C2S—H2S0.9500
C12—H12A0.9900C3S—C4S1.3842 (19)
C12—H12B0.9900C3S—H3S0.9500
C13—O141.4257 (15)C4S—C5S1.3856 (18)
C13—H13A0.9900C4S—H4S0.9500
C13—H13B0.9900C5S—C6S1.3848 (19)
O14—C151.4269 (14)C5S—H5S0.9500
C15—C161.5066 (18)C6S—H6S0.9500
C15—H15A0.9900
C21—N1—C2117.64 (9)O14—C15—H15B108.9
C21—N1—C20124.81 (9)C16—C15—H15B108.9
C2—N1—C20117.31 (9)H15A—C15—H15B107.7
N1—C2—C3113.65 (9)O17—C16—C15108.46 (10)
N1—C2—H2A108.8O17—C16—H16A110.0
C3—C2—H2A108.8C15—C16—H16A110.0
N1—C2—H2B108.8O17—C16—H16B110.0
C3—C2—H2B108.8C15—C16—H16B110.0
H2A—C2—H2B107.7H16A—C16—H16B108.4
O4—C3—C2109.78 (9)C18—O17—C16113.39 (9)
O4—C3—H3A109.7O17—C18—C19112.94 (10)
C2—C3—H3A109.7O17—C18—H18A109.0
O4—C3—H3B109.7C19—C18—H18A109.0
C2—C3—H3B109.7O17—C18—H18B109.0
H3A—C3—H3B108.2C19—C18—H18B109.0
C5—O4—C3112.59 (8)H18A—C18—H18B107.8
O4—C5—C6112.06 (9)C18—C19—C20114.43 (10)
O4—C5—H5A109.2C18—C19—H19A108.7
C6—C5—H5A109.2C20—C19—H19A108.7
O4—C5—H5B109.2C18—C19—H19B108.7
C6—C5—H5B109.2C20—C19—H19B108.7
H5A—C5—H5B107.9H19A—C19—H19B107.6
N7—C6—C5113.36 (10)N1—C20—C19113.30 (10)
N7—C6—H6A108.9N1—C20—H20A108.9
C5—C6—H6A108.9C19—C20—H20A108.9
N7—C6—H6B108.9N1—C20—H20B108.9
C5—C6—H6B108.9C19—C20—H20B108.9
H6A—C6—H6B107.7H20A—C20—H20B107.7
C26i—N7—C6117.95 (9)O22—C21—N1122.34 (10)
C26i—N7—C8124.07 (9)O22—C21—C23120.75 (10)
C6—N7—C8117.93 (9)N1—C21—C23116.91 (9)
N7—C8—C9112.88 (9)O24—C23—C21111.41 (9)
N7—C8—H8A109.0O24—C23—H23A109.3
C9—C8—H8A109.0C21—C23—H23A109.3
N7—C8—H8B109.0O24—C23—H23B109.3
C9—C8—H8B109.0C21—C23—H23B109.3
H8A—C8—H8B107.8H23A—C23—H23B108.0
C10—C9—C8111.23 (9)C23—O24—C25112.15 (8)
C10—C9—H9A109.4O24—C25—C26107.45 (9)
C8—C9—H9A109.4O24—C25—H25A110.2
C10—C9—H9B109.4C26—C25—H25A110.2
C8—C9—H9B109.4O24—C25—H25B110.2
H9A—C9—H9B108.0C26—C25—H25B110.2
O11—C10—C9109.22 (9)H25A—C25—H25B108.5
O11—C10—H10A109.8O27—C26—N7i122.37 (10)
C9—C10—H10A109.8O27—C26—C25120.34 (10)
O11—C10—H10B109.8N7i—C26—C25117.29 (10)
C9—C10—H10B109.8C2S—C1S—C6S119.43 (12)
H10A—C10—H10B108.3C2S—C1S—H1S120.3
C10—O11—C12111.42 (9)C6S—C1S—H1S120.3
O11—C12—C13110.40 (10)C1S—C2S—C3S119.94 (12)
O11—C12—H12A109.6C1S—C2S—H2S120.0
C13—C12—H12A109.6C3S—C2S—H2S120.0
O11—C12—H12B109.6C4S—C3S—C2S120.43 (12)
C13—C12—H12B109.6C4S—C3S—H3S119.8
H12A—C12—H12B108.1C2S—C3S—H3S119.8
O14—C13—C12109.13 (10)C3S—C4S—C5S119.77 (12)
O14—C13—H13A109.9C3S—C4S—H4S120.1
C12—C13—H13A109.9C5S—C4S—H4S120.1
O14—C13—H13B109.9C6S—C5S—C4S119.96 (12)
C12—C13—H13B109.9C6S—C5S—H5S120.0
H13A—C13—H13B108.3C4S—C5S—H5S120.0
C13—O14—C15113.38 (9)C5S—C6S—C1S120.47 (12)
O14—C15—C16113.48 (10)C5S—C6S—H6S119.8
O14—C15—H15A108.9C1S—C6S—H6S119.8
C16—C15—H15A108.9
C21—N1—C2—C392.67 (12)O17—C18—C19—C20−50.94 (14)
C20—N1—C2—C3−81.95 (12)C21—N1—C20—C19115.78 (12)
N1—C2—C3—O473.21 (12)C2—N1—C20—C19−70.02 (12)
C2—C3—O4—C5−178.20 (9)C18—C19—C20—N1−61.35 (13)
C3—O4—C5—C6100.21 (11)C2—N1—C21—O226.07 (15)
O4—C5—C6—N7−59.09 (13)C20—N1—C21—O22−179.75 (10)
C5—C6—N7—C26i−75.20 (13)C2—N1—C21—C23−173.17 (9)
C5—C6—N7—C8102.34 (11)C20—N1—C21—C231.00 (15)
C26i—N7—C8—C9−102.18 (12)O22—C21—C23—O2410.07 (15)
C6—N7—C8—C980.43 (12)N1—C21—C23—O24−170.67 (9)
N7—C8—C9—C10177.10 (9)C21—C23—O24—C2575.22 (11)
C8—C9—C10—O1157.98 (13)C23—O24—C25—C26172.99 (8)
C9—C10—O11—C12162.03 (9)O24—C25—C26—O27−110.47 (11)
C10—O11—C12—C13169.66 (10)O24—C25—C26—N7i68.94 (12)
O11—C12—C13—O14−83.13 (12)C6S—C1S—C2S—C3S1.05 (19)
C12—C13—O14—C15−168.70 (9)C1S—C2S—C3S—C4S−0.38 (19)
C13—O14—C15—C16−82.55 (13)C2S—C3S—C4S—C5S−0.64 (18)
O14—C15—C16—O17−65.05 (13)C3S—C4S—C5S—C6S0.98 (18)
C15—C16—O17—C18159.12 (10)C4S—C5S—C6S—C1S−0.31 (19)
C16—O17—C18—C19−71.92 (12)C2S—C1S—C6S—C5S−0.71 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2175).

References

  • Bencini, A., Bianchi, A., Ciampolini, M., Dapporto, P., Fusi, V., Micheloni, M., Nardi, N., Paoli, P. & Valtancoli, B. (1992). J. Chem. Soc. Dalton Trans. pp. 2049–2054.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheetham, G. M. T. & Harding, M. M. (1991). Acta Cryst. C47, 2478–2479.
  • Cheney, J., Kintzinger, J. P. & Lehn, J. M. (1978). Nouv. J. Chim.2, 411–418.
  • Dietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629–1645.
  • Fischer, J., Mellinger, M. & Weiss, R. (1977). Inorg. Chim. Acta, 21, 259–263.
  • Groth, P. (1986). Acta Chem. Scand. Ser. A, 40, 154–156.
  • Krakowiak, K. E., Bradshaw, J. S., Kou, X. & Dalley, N. K. (1995). J. Heterocycl. Chem.32, 931–935.
  • Lehn, J. M. (1973). Struct. Bond.16, 1–69.
  • Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl.27, 89–112.
  • Lehn, J. M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim.1, 77–84.
  • Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 557–560.
  • Plenio, H. & Diodone, R. (1995). J. Organomet. Chem.492, 73–80.
  • Rebizant, J., Spirlet, M. R., Barthelemy, P. & Desreux, J. F. (1984). Acta Cryst. C40, 484–486.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253–o1255.
  • Wiest, R. & Weiss, R. (1973). J. Chem. Soc. Chem. Commun. pp. 678–679.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography