PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m932.
Published online 2009 July 18. doi:  10.1107/S160053680902710X
PMCID: PMC2977416

Tetra-μ-acetato-bis­{[9-(pyrazin-2-yl)-9H-carbazole]copper(II)}

Abstract

The title complex, [Cu2(CH3COO)4(C16H11N3)2], lies on an inversion centre, with four acetate ligands bridging two symmetry-related CuII ions and two monodentate 9-(pyrazin-2-yl)-9H-carbazole ligands coordinating each CuII ion via the N atoms of the pyrazine rings, forming slightly distorted square-pyramidal geometries. There are weak π–π stacking inter­actions between the pyrrole rings of symmetry-related mol­ecules, with a centroid-to-centroid distance of 3.692 (2) Å.

Related literature

For a related structure, see: Meng et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m932-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C16H11N3)2]
  • M r = 853.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m932-efi1.jpg
  • a = 8.2608 (12) Å
  • b = 9.7181 (15) Å
  • c = 11.9688 (18) Å
  • α = 83.002 (2)°
  • β = 86.756 (2)°
  • γ = 72.533 (2)°
  • V = 909.5 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.23 mm−1
  • T = 298 K
  • 0.35 × 0.34 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.672, T max = 0.765
  • 4972 measured reflections
  • 3493 independent reflections
  • 3183 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.148
  • S = 1.05
  • 3493 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 2.11 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902710X/lh2859sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902710X/lh2859Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

9-(pyrazin-2-yl)-9H-carbazole is potentially good ligand for forming complexes with π–π stacking interactions due to the large conjugation plane of carbazole ring system. Interest in synthesizing complexes with π–π stacking interactions motivated us to obtain the title complex and herein the crystal structure of the title compound, (I), is reported.

Figure 1 and Table 1 reveal that the unique CuII ion is in a slightly distorted square-pyramidal coordination geometry with N1 atom lying at the apex. Four actate anions bridge two symmetry related CuII ions with a Cu···Cu separation of 2.6120 (7) Å, which is shorter than that of the similar binuclear CuII complex (Meng et al., 2009). In (I) there is an inversion center in the middle of the two CuII ions. There is a weak π–π interaction with Cg1···Cg1i = 3.692 (2) Å (symmetry code: (i): 1-x, 1-y, 2-z and Cg1···Cg1iperp = 3.505 Å; α is 0.00° [Cg1 is the centroid of C5–C8/N3 ring; Cg1···Cg1iperp is the perpendicular distance from ring Cg1 to ring Cg1i; α is the dihedral angle between the Cg1 ring plane and the Cg1i ring plane]. The dihedral angle between pyrazine ring plane and carbazole ring system plane is 20.01 (14)°.

Experimental

9-(pyrazin-2-yl)-9H-carbazole (0.1115 g, 0.455 mmol) was dissolved in 10 ml acetonitrile and copper acetate hydrate (0.0910 g, 0.456 mmol) was added into 10 ml methanol. The solutions were mixed and stirred for a few minutes. Blue single crystals were obtained after the solution had been allowed to stand at room temperature for one month.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C)for methyl group and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for 9-(pyrazin-2-yl)-9H-carbazole H atoms.

Figures

Fig. 1.
The molecular structure of title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu2(C2H3O2)4(C16H11N3)2]Z = 1
Mr = 853.81F(000) = 438
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2608 (12) ÅCell parameters from 3057 reflections
b = 9.7181 (15) Åθ = 2.6–28.0°
c = 11.9688 (18) ŵ = 1.23 mm1
α = 83.002 (2)°T = 298 K
β = 86.756 (2)°Block, blue
γ = 72.533 (2)°0.35 × 0.34 × 0.23 mm
V = 909.5 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer3493 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.672, Tmax = 0.765k = −11→11
4972 measured reflectionsl = −6→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0986P)2 + 0.8758P] where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max = 0.011
255 parametersΔρmax = 2.11 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4087 (6)0.8536 (5)1.0557 (4)0.0503 (10)
H10.34420.94881.03480.060*
C20.5243 (5)0.7790 (4)0.9784 (3)0.0406 (8)
H20.53870.82350.90680.049*
C30.3877 (6)0.7884 (5)1.1634 (3)0.0540 (11)
H30.30850.83991.21310.065*
C40.4827 (5)0.6489 (5)1.1969 (3)0.0453 (9)
H40.46900.60571.26910.054*
C50.5990 (4)0.5734 (4)1.1220 (3)0.0334 (7)
C60.6169 (4)0.6377 (4)1.0109 (3)0.0307 (7)
C70.7230 (4)0.4315 (4)1.1335 (3)0.0334 (7)
C80.8123 (4)0.4117 (4)1.0305 (3)0.0322 (7)
C90.9440 (5)0.2866 (4)1.0177 (3)0.0468 (9)
H91.00300.27220.94950.056*
C100.9841 (6)0.1841 (5)1.1104 (4)0.0587 (12)
H101.07210.09921.10380.070*
C110.8984 (6)0.2028 (5)1.2130 (4)0.0545 (11)
H110.93080.13211.27380.065*
C120.7652 (5)0.3261 (4)1.2249 (3)0.0434 (9)
H120.70490.33831.29280.052*
C130.7908 (4)0.5546 (3)0.8399 (3)0.0281 (6)
C140.6825 (4)0.6558 (4)0.7633 (3)0.0326 (7)
H140.57450.70710.78720.039*
C150.8839 (4)0.6001 (4)0.6240 (3)0.0358 (7)
H150.92280.61560.55040.043*
C160.9841 (5)0.4945 (4)0.6993 (3)0.0402 (8)
H161.08710.43600.67350.048*
C170.3340 (4)1.0792 (3)0.6772 (3)0.0296 (7)
C180.2354 (5)1.1199 (4)0.7839 (3)0.0397 (8)
H18A0.28351.18140.81950.059*
H18B0.24041.03370.83380.059*
H18C0.11921.17070.76630.059*
C190.2777 (4)0.8810 (4)0.4608 (3)0.0349 (7)
C200.1397 (5)0.8131 (5)0.4428 (4)0.0529 (10)
H20A0.05220.83760.49960.079*
H20B0.18720.70960.44750.079*
H20C0.09220.84910.36980.079*
Cu10.58853 (4)0.87807 (4)0.55418 (3)0.02722 (17)
N10.7313 (4)0.6801 (3)0.6565 (2)0.0305 (6)
N20.9401 (4)0.4724 (3)0.8071 (2)0.0363 (6)
N30.7439 (4)0.5373 (3)0.9538 (2)0.0315 (6)
O10.4480 (3)0.9594 (3)0.6823 (2)0.0384 (6)
O20.4057 (3)0.8024 (3)0.5140 (2)0.0423 (6)
O30.7047 (3)0.8328 (3)0.4096 (2)0.0385 (6)
O40.7467 (3)0.9890 (3)0.5768 (2)0.0416 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.055 (2)0.040 (2)0.045 (2)0.0041 (17)0.0040 (18)−0.0097 (18)
C20.048 (2)0.0384 (19)0.0271 (17)−0.0019 (16)0.0018 (15)0.0000 (15)
C30.056 (2)0.056 (3)0.042 (2)−0.003 (2)0.0116 (19)−0.014 (2)
C40.051 (2)0.055 (2)0.0289 (18)−0.0145 (18)0.0077 (16)−0.0053 (17)
C50.0367 (18)0.0358 (18)0.0281 (17)−0.0130 (14)−0.0011 (13)0.0008 (14)
C60.0341 (17)0.0333 (17)0.0237 (15)−0.0089 (13)−0.0003 (12)−0.0013 (13)
C70.0371 (18)0.0353 (18)0.0277 (16)−0.0124 (14)−0.0032 (13)0.0031 (14)
C80.0355 (17)0.0332 (17)0.0243 (16)−0.0074 (14)−0.0038 (13)0.0055 (13)
C90.048 (2)0.043 (2)0.035 (2)0.0024 (17)0.0051 (16)0.0082 (16)
C100.060 (3)0.040 (2)0.054 (3)0.0091 (19)0.002 (2)0.0175 (19)
C110.066 (3)0.047 (2)0.041 (2)−0.011 (2)−0.007 (2)0.0198 (18)
C120.054 (2)0.047 (2)0.0280 (18)−0.0169 (18)−0.0018 (16)0.0097 (16)
C130.0319 (16)0.0272 (15)0.0231 (15)−0.0077 (12)−0.0012 (12)0.0025 (12)
C140.0315 (16)0.0341 (17)0.0253 (15)−0.0014 (13)0.0012 (12)0.0006 (13)
C150.0404 (19)0.0351 (18)0.0256 (16)−0.0049 (14)0.0057 (13)0.0016 (13)
C160.0349 (18)0.0380 (19)0.0354 (19)0.0035 (14)0.0057 (14)0.0040 (15)
C170.0301 (16)0.0306 (16)0.0256 (15)−0.0061 (13)0.0037 (12)−0.0026 (13)
C180.0437 (19)0.0377 (19)0.0293 (17)−0.0010 (15)0.0068 (14)−0.0038 (15)
C190.0340 (17)0.044 (2)0.0286 (16)−0.0138 (15)0.0053 (13)−0.0072 (15)
C200.044 (2)0.065 (3)0.057 (3)−0.027 (2)0.0008 (19)−0.009 (2)
Cu10.0280 (3)0.0261 (3)0.0220 (2)−0.00184 (16)0.00039 (15)0.00279 (16)
N10.0330 (14)0.0294 (14)0.0233 (13)−0.0030 (11)−0.0007 (11)0.0039 (11)
N20.0341 (15)0.0350 (15)0.0309 (15)−0.0006 (12)0.0001 (12)0.0055 (12)
N30.0344 (14)0.0314 (14)0.0222 (13)−0.0038 (11)−0.0008 (11)0.0068 (11)
O10.0408 (13)0.0348 (13)0.0285 (12)0.0027 (10)0.0064 (10)0.0000 (10)
O20.0409 (14)0.0401 (14)0.0466 (15)−0.0150 (11)−0.0051 (11)0.0024 (12)
O30.0397 (13)0.0364 (13)0.0273 (12)0.0039 (10)0.0039 (10)0.0024 (10)
O40.0364 (13)0.0433 (15)0.0440 (15)−0.0121 (11)−0.0071 (11)0.0029 (12)

Geometric parameters (Å, °)

C1—C31.391 (6)C14—H140.9300
C1—C21.393 (5)C15—N11.332 (4)
C1—H10.9300C15—C161.378 (5)
C2—C61.376 (5)C15—H150.9300
C2—H20.9300C16—N21.330 (4)
C3—C41.371 (6)C16—H160.9300
C3—H30.9300C17—O3i1.253 (4)
C4—C51.380 (5)C17—O11.256 (4)
C4—H40.9300C17—C181.504 (4)
C5—C61.419 (5)C18—H18A0.9600
C5—C71.446 (5)C18—H18B0.9600
C6—N31.409 (4)C18—H18C0.9600
C7—C121.386 (5)C19—O4i1.248 (4)
C7—C81.405 (5)C19—O21.257 (4)
C8—C91.384 (5)C19—C201.516 (5)
C8—N31.423 (4)C20—H20A0.9600
C9—C101.382 (5)C20—H20B0.9600
C9—H90.9300C20—H20C0.9600
C10—C111.385 (6)Cu1—O31.963 (2)
C10—H100.9300Cu1—O11.967 (2)
C11—C121.378 (6)Cu1—O21.972 (3)
C11—H110.9300Cu1—O41.975 (3)
C12—H120.9300Cu1—N12.196 (3)
C13—N21.321 (4)Cu1—Cu1i2.6120 (7)
C13—C141.398 (4)O3—C17i1.253 (4)
C13—N31.399 (4)O4—C19i1.248 (4)
C14—N11.332 (4)
C3—C1—C2121.2 (4)N2—C16—H16118.5
C3—C1—H1119.4C15—C16—H16118.5
C2—C1—H1119.4O3i—C17—O1125.3 (3)
C6—C2—C1118.3 (3)O3i—C17—C18117.4 (3)
C6—C2—H2120.9O1—C17—C18117.3 (3)
C1—C2—H2120.9C17—C18—H18A109.5
C4—C3—C1120.6 (4)C17—C18—H18B109.5
C4—C3—H3119.7H18A—C18—H18B109.5
C1—C3—H3119.7C17—C18—H18C109.5
C3—C4—C5119.1 (4)H18A—C18—H18C109.5
C3—C4—H4120.5H18B—C18—H18C109.5
C5—C4—H4120.5O4i—C19—O2125.6 (3)
C4—C5—C6120.5 (3)O4i—C19—C20117.2 (3)
C4—C5—C7132.3 (3)O2—C19—C20117.2 (3)
C6—C5—C7107.1 (3)C19—C20—H20A109.5
C2—C6—N3131.4 (3)C19—C20—H20B109.5
C2—C6—C5120.2 (3)H20A—C20—H20B109.5
N3—C6—C5108.3 (3)C19—C20—H20C109.5
C12—C7—C8120.6 (3)H20A—C20—H20C109.5
C12—C7—C5131.4 (4)H20B—C20—H20C109.5
C8—C7—C5107.9 (3)O3—Cu1—O1168.81 (10)
C9—C8—C7120.9 (3)O3—Cu1—O290.06 (12)
C9—C8—N3131.0 (3)O1—Cu1—O289.26 (12)
C7—C8—N3108.1 (3)O3—Cu1—O488.60 (11)
C10—C9—C8117.2 (4)O1—Cu1—O489.90 (12)
C10—C9—H9121.4O2—Cu1—O4168.78 (10)
C8—C9—H9121.4O3—Cu1—N197.47 (10)
C9—C10—C11122.6 (4)O1—Cu1—N193.71 (10)
C9—C10—H10118.7O2—Cu1—N196.33 (11)
C11—C10—H10118.7O4—Cu1—N194.88 (11)
C12—C11—C10120.1 (4)O3—Cu1—Cu1i86.47 (7)
C12—C11—H11119.9O1—Cu1—Cu1i82.34 (7)
C10—C11—H11119.9O2—Cu1—Cu1i84.81 (8)
C11—C12—C7118.6 (4)O4—Cu1—Cu1i83.99 (8)
C11—C12—H12120.7N1—Cu1—Cu1i175.89 (7)
C7—C12—H12120.7C15—N1—C14117.8 (3)
N2—C13—C14121.0 (3)C15—N1—Cu1121.7 (2)
N2—C13—N3118.1 (3)C14—N1—Cu1118.9 (2)
C14—C13—N3120.9 (3)C13—N2—C16116.8 (3)
N1—C14—C13121.1 (3)C13—N3—C6126.2 (3)
N1—C14—H14119.4C13—N3—C8125.4 (3)
C13—C14—H14119.4C6—N3—C8108.4 (3)
N1—C15—C16120.0 (3)C17—O1—Cu1125.2 (2)
N1—C15—H15120.0C19—O2—Cu1122.3 (2)
C16—C15—H15120.0C17i—O3—Cu1120.6 (2)
N2—C16—C15123.0 (3)C19i—O4—Cu1123.3 (2)
C3—C1—C2—C60.7 (6)O4—Cu1—N1—C1497.6 (3)
C2—C1—C3—C40.9 (7)Cu1i—Cu1—N1—C1423.6 (13)
C1—C3—C4—C5−0.4 (7)C14—C13—N2—C162.4 (5)
C3—C4—C5—C6−1.7 (6)N3—C13—N2—C16−177.8 (3)
C3—C4—C5—C7175.6 (4)C15—C16—N2—C131.9 (6)
C1—C2—C6—N3−178.2 (4)N2—C13—N3—C6161.2 (3)
C1—C2—C6—C5−2.8 (6)C14—C13—N3—C6−19.0 (5)
C4—C5—C6—C23.4 (5)N2—C13—N3—C8−21.7 (5)
C7—C5—C6—C2−174.5 (3)C14—C13—N3—C8158.2 (3)
C4—C5—C6—N3179.8 (3)C2—C6—N3—C13−9.3 (6)
C7—C5—C6—N31.9 (4)C5—C6—N3—C13174.8 (3)
C4—C5—C7—C12−0.6 (7)C2—C6—N3—C8173.2 (4)
C6—C5—C7—C12176.9 (4)C5—C6—N3—C8−2.7 (4)
C4—C5—C7—C8−177.9 (4)C9—C8—N3—C136.0 (6)
C6—C5—C7—C8−0.3 (4)C7—C8—N3—C13−175.1 (3)
C12—C7—C8—C90.2 (6)C9—C8—N3—C6−176.5 (4)
C5—C7—C8—C9177.8 (3)C7—C8—N3—C62.5 (4)
C12—C7—C8—N3−178.9 (3)O3i—C17—O1—Cu1−2.1 (5)
C5—C7—C8—N3−1.3 (4)C18—C17—O1—Cu1177.6 (2)
C7—C8—C9—C10−0.7 (6)O3—Cu1—O1—C172.9 (7)
N3—C8—C9—C10178.1 (4)O2—Cu1—O1—C17−83.6 (3)
C8—C9—C10—C110.0 (8)O4—Cu1—O1—C1785.2 (3)
C9—C10—C11—C121.3 (8)N1—Cu1—O1—C17−179.9 (3)
C10—C11—C12—C7−1.8 (7)Cu1i—Cu1—O1—C171.2 (3)
C8—C7—C12—C111.1 (6)O4i—C19—O2—Cu13.3 (5)
C5—C7—C12—C11−175.9 (4)C20—C19—O2—Cu1−175.5 (2)
N2—C13—C14—N1−5.0 (5)O3—Cu1—O2—C19−88.5 (3)
N3—C13—C14—N1175.2 (3)O1—Cu1—O2—C1980.3 (3)
N1—C15—C16—N2−3.9 (6)O4—Cu1—O2—C19−5.4 (7)
C16—C15—N1—C141.2 (5)N1—Cu1—O2—C19173.9 (3)
C16—C15—N1—Cu1166.9 (3)Cu1i—Cu1—O2—C19−2.1 (3)
C13—C14—N1—C153.0 (5)O1—Cu1—O3—C17i−1.3 (7)
C13—C14—N1—Cu1−163.1 (3)O2—Cu1—O3—C17i85.2 (3)
O3—Cu1—N1—C1521.3 (3)O4—Cu1—O3—C17i−83.7 (3)
O1—Cu1—N1—C15−158.1 (3)N1—Cu1—O3—C17i−178.4 (3)
O2—Cu1—N1—C15112.2 (3)Cu1i—Cu1—O3—C17i0.4 (3)
O4—Cu1—N1—C15−67.9 (3)O3—Cu1—O4—C19i86.1 (3)
Cu1i—Cu1—N1—C15−141.9 (10)O1—Cu1—O4—C19i−82.8 (3)
O3—Cu1—N1—C14−173.2 (3)O2—Cu1—O4—C19i2.8 (7)
O1—Cu1—N1—C147.4 (3)N1—Cu1—O4—C19i−176.6 (3)
O2—Cu1—N1—C14−82.3 (3)Cu1i—Cu1—O4—C19i−0.5 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2859).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Meng, L., Yang, L. Y. & Shi, J. M. (2009). Acta Cryst. E65, m646. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography