PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1989.
Published online 2009 July 25. doi:  10.1107/S1600536809027366
PMCID: PMC2977411

N′-(3,4-Dimethoxy­benzyl­idene)acetohydrazide

Abstract

In the title mol­ecule, C11H14N2O3, the acetohydrazide group is planar 0.084 (1) Å and forms a dihedral angle of 19.7 (1)° with the benzene ring. One of the meth­oxy groups is coplanar with the attached benzene ring within 0.052 (3) Å, whereas the other is slightly twisted [C—O—C—C = 6.3 (3)°]. The mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal, the mol­ecules are linked into chains along the a axis by N—H(...)O hydrogen bonds and the chains are cross-linked into a three-dimensional network by C—H(...)O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997 [triangle]); Offe et al. (1952 [triangle]); Richardson et al. (1988 [triangle]). For related structures, see: Li & Jian (2008 [triangle]); Tamboura et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1989-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O3
  • M r = 222.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1989-efi1.jpg
  • a = 8.794 (3) Å
  • b = 10.920 (3) Å
  • c = 24.418 (7) Å
  • V = 2345.0 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 223 K
  • 0.24 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.977, T max = 0.979
  • 11332 measured reflections
  • 2070 independent reflections
  • 1819 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.133
  • S = 1.10
  • 2070 reflections
  • 149 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027366/ci2855sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027366/ci2855Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and are used as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The acetohydrazide group is planar and it forms a dihedral angle of 19.7 (1)° with the benzene ring. One of the methoxy groups is coplanar with the attached benzene ring [C1—O1—C4—C5 = -1.7 (3)°] whereas the other is slightly twisted [C2—O2—C3—C8 = 6.3 (3)°]. The molecule adopts a trans configuration with respect to the C═N bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

The molecules are linked into a chain along the a axis by N—H···O hydrogen bonds (Table 1). The chains are cross-linked into a three-dimensional network by C—H···O hydrogen bonds (Fig.2).

Experimental

3,4-Dimethoxybenzaldehyde (1.66 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 470–472 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H14N2O3F(000) = 944
Mr = 222.24Dx = 1.259 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2070 reflections
a = 8.794 (3) Åθ = 1.7–25.0°
b = 10.920 (3) ŵ = 0.09 mm1
c = 24.418 (7) ÅT = 223 K
V = 2345.0 (12) Å3Block, colourless
Z = 80.24 × 0.21 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2070 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.977, Tmax = 0.979k = −12→12
11332 measured reflectionsl = −27→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.133w = 1/[σ2(Fo2) + (0.0593P)2 + 0.6946P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2070 reflectionsΔρmax = 0.15 e Å3
149 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.00337 (17)0.67057 (13)0.22113 (6)0.0725 (5)
O2−0.21387 (16)0.81158 (15)0.18477 (6)0.0738 (5)
O3−0.07522 (17)1.32783 (14)0.01901 (7)0.0735 (5)
C3−0.0722 (2)0.83356 (17)0.16379 (7)0.0516 (5)
C70.1114 (2)0.93669 (17)0.10716 (7)0.0519 (5)
C40.0432 (2)0.75598 (17)0.18390 (8)0.0537 (5)
C60.2227 (2)0.8587 (2)0.12649 (8)0.0621 (5)
H60.32160.86630.11350.074*
C8−0.0381 (2)0.92289 (17)0.12603 (7)0.0507 (5)
H8−0.11430.97420.11300.061*
C100.0460 (2)1.29542 (18)−0.00180 (8)0.0556 (5)
C50.1896 (2)0.76932 (19)0.16500 (9)0.0625 (6)
H50.26630.71840.17800.075*
C90.1527 (2)1.03131 (19)0.06757 (8)0.0564 (5)
H90.25011.03030.05280.068*
C110.1217 (3)1.3670 (2)−0.04662 (9)0.0702 (6)
H11A0.07061.3517−0.08070.105*
H11B0.22611.3423−0.04960.105*
H11C0.11691.4528−0.03820.105*
C2−0.3390 (2)0.8771 (3)0.16274 (10)0.0825 (7)
H2A−0.32340.96330.16800.124*
H2B−0.43070.85240.18100.124*
H2C−0.34760.86000.12430.124*
C10.1076 (3)0.5863 (2)0.24102 (11)0.0827 (8)
H1A0.15180.54290.21080.124*
H1B0.06010.52910.26550.124*
H1C0.18570.63030.26020.124*
N20.12042 (19)1.19408 (15)0.01359 (6)0.0569 (4)
H20.20711.1778−0.00100.068*
N10.06138 (18)1.11504 (14)0.05240 (6)0.0544 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0779 (10)0.0661 (9)0.0736 (10)−0.0030 (7)−0.0097 (8)0.0243 (8)
O20.0572 (9)0.0863 (11)0.0779 (10)0.0039 (8)0.0052 (7)0.0262 (8)
O30.0634 (9)0.0642 (10)0.0929 (11)0.0057 (7)−0.0005 (8)0.0069 (8)
C30.0533 (11)0.0536 (11)0.0479 (10)−0.0003 (9)−0.0020 (8)−0.0001 (8)
C70.0581 (11)0.0515 (11)0.0462 (10)0.0034 (9)−0.0006 (8)−0.0017 (8)
C40.0650 (12)0.0477 (10)0.0486 (10)−0.0021 (9)−0.0085 (9)0.0030 (8)
C60.0545 (11)0.0661 (13)0.0656 (12)0.0041 (10)0.0016 (10)0.0063 (10)
C80.0560 (11)0.0488 (10)0.0473 (10)0.0068 (8)−0.0032 (8)0.0010 (8)
C100.0587 (12)0.0505 (11)0.0576 (11)−0.0049 (9)−0.0092 (9)−0.0037 (9)
C50.0624 (12)0.0574 (12)0.0679 (13)0.0097 (10)−0.0096 (10)0.0071 (10)
C90.0559 (11)0.0605 (12)0.0529 (10)0.0042 (10)0.0022 (9)0.0027 (9)
C110.0918 (16)0.0530 (12)0.0659 (13)−0.0018 (11)−0.0030 (12)0.0071 (10)
C20.0548 (12)0.1042 (19)0.0886 (17)0.0095 (13)0.0055 (12)0.0167 (15)
C10.0994 (18)0.0651 (14)0.0836 (16)0.0000 (13)−0.0244 (14)0.0224 (13)
N20.0577 (9)0.0551 (10)0.0578 (9)0.0008 (8)0.0040 (8)0.0078 (8)
N10.0572 (9)0.0525 (9)0.0536 (9)−0.0042 (8)0.0005 (7)0.0052 (7)

Geometric parameters (Å, °)

O1—C41.365 (2)C10—C111.501 (3)
O1—C11.427 (3)C5—H50.93
O2—C31.368 (2)C9—N11.272 (2)
O2—C21.419 (3)C9—H90.93
O3—C101.233 (2)C11—H11A0.96
C3—C81.375 (3)C11—H11B0.96
C3—C41.410 (3)C11—H11C0.96
C7—C61.381 (3)C2—H2A0.96
C7—C81.401 (3)C2—H2B0.96
C7—C91.461 (3)C2—H2C0.96
C4—C51.375 (3)C1—H1A0.96
C6—C51.386 (3)C1—H1B0.96
C6—H60.93C1—H1C0.96
C8—H80.93N2—N11.383 (2)
C10—N21.340 (2)N2—H20.86
C4—O1—C1117.52 (18)N1—C9—H9118.5
C3—O2—C2118.41 (16)C7—C9—H9118.5
O2—C3—C8125.05 (17)C10—C11—H11A109.5
O2—C3—C4114.81 (17)C10—C11—H11B109.5
C8—C3—C4120.14 (18)H11A—C11—H11B109.5
C6—C7—C8119.11 (18)C10—C11—H11C109.5
C6—C7—C9119.09 (18)H11A—C11—H11C109.5
C8—C7—C9121.80 (17)H11B—C11—H11C109.5
O1—C4—C5125.20 (18)O2—C2—H2A109.5
O1—C4—C3115.24 (18)O2—C2—H2B109.5
C5—C4—C3119.55 (18)H2A—C2—H2B109.5
C7—C6—C5121.14 (19)O2—C2—H2C109.5
C7—C6—H6119.4H2A—C2—H2C109.5
C5—C6—H6119.4H2B—C2—H2C109.5
C3—C8—C7120.12 (17)O1—C1—H1A109.5
C3—C8—H8119.9O1—C1—H1B109.5
C7—C8—H8119.9H1A—C1—H1B109.5
O3—C10—N2122.96 (19)O1—C1—H1C109.5
O3—C10—C11122.33 (19)H1A—C1—H1C109.5
N2—C10—C11114.71 (19)H1B—C1—H1C109.5
C4—C5—C6119.93 (19)C10—N2—N1121.62 (17)
C4—C5—H5120.0C10—N2—H2119.2
C6—C5—H5120.0N1—N2—H2119.2
N1—C9—C7122.97 (18)C9—N1—N2114.28 (17)
C2—O2—C3—C86.3 (3)C6—C7—C8—C30.7 (3)
C2—O2—C3—C4−173.8 (2)C9—C7—C8—C3−179.28 (17)
C1—O1—C4—C5−1.7 (3)O1—C4—C5—C6179.13 (18)
C1—O1—C4—C3177.38 (18)C3—C4—C5—C60.1 (3)
O2—C3—C4—O10.1 (2)C7—C6—C5—C41.1 (3)
C8—C3—C4—O1−179.94 (16)C6—C7—C9—N1−171.95 (19)
O2—C3—C4—C5179.25 (18)C8—C7—C9—N18.1 (3)
C8—C3—C4—C5−0.8 (3)O3—C10—N2—N13.4 (3)
C8—C7—C6—C5−1.5 (3)C11—C10—N2—N1−176.62 (17)
C9—C7—C6—C5178.54 (18)C7—C9—N1—N2−178.40 (17)
O2—C3—C8—C7−179.67 (18)C10—N2—N1—C9−171.88 (17)
C4—C3—C8—C70.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.972.803 (2)164
C1—H1C···O2ii0.962.553.435 (3)153
C11—H11C···O3iii0.962.473.425 (3)174

Symmetry codes: (i) x+1/2, −y+5/2, −z; (ii) x+1/2, y, −z+1/2; (iii) −x, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2855).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.
  • Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [PMC free article] [PubMed]
  • Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  • Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography