PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2014.
Published online 2009 July 29. doi:  10.1107/S1600536809029250
PMCID: PMC2977400

2-(4-Bromo­phen­yl)-1-(phenyl­sulfin­yl)naphtho[2,1-b]furan

Abstract

In the title compound, C24H15BrO2S, the sulfinyl O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane through the naphthofuran fragment. The phenyl ring is nearly perpendicular to the plane of the tricyclic naphthofuran system [81.77 (6)°] and is tilted slightly towards it. The 4-bromo­phenyl ring is rotated out of the naphthofuran plane by a dihedral angle of 31.12 (4)°. In the crystal structure, non-classical inter­molecular C—H(...)O and C—H(...)Br hydrogen bonds are observed. The crystal structure also exhibits aromatic π–π inter­actions between the furan ring and the central benzene ring of the adjacent naphthofuran system [centroid–centroid distance = 3.768 (3) Å]. In addition, inter­molecular C—Br(...)π inter­actions [3.866 (2) Å] between the Br atom and the phenyl ring of the phenyl­sulfinyl substituent are present.

Related literature

For the crystal structures of similar 2-phenyl-1-(phenyl­sulfin­yl)-naphtho[2,1-b]furan derivatives, see: Choi et al. (2009a [triangle],b [triangle]). For the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004 [triangle]); Hagiwara et al. (1999 [triangle]); Piloto et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2014-scheme1.jpg

Experimental

Crystal data

  • C24H15BrO2S
  • M r = 447.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2014-efi1.jpg
  • a = 9.2412 (5) Å
  • b = 10.3266 (6) Å
  • c = 10.7606 (6) Å
  • α = 71.424 (1)°
  • β = 77.933 (1)°
  • γ = 79.287 (1)°
  • V = 943.96 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.31 mm−1
  • T = 273 K
  • 0.50 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.392, T max = 0.724
  • 8200 measured reflections
  • 4057 independent reflections
  • 3482 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.068
  • S = 1.06
  • 4057 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029250/im2130sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029250/im2130Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules containing naphthofuran moieties have attracted considerable interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan analogues, as 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009a) and 7-bromo-2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009b). Here we report the crystal structure of the title compound (I) (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.020 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle in (I) formed by the plane of the naphthofuran system and the plane of the 4-bromophenyl ring measures to 31.12 (4) Å. The respective dihedral angle with the phenyl ring (C19-C24) shows a value of 81.77 (6) Å with respect to the naphthofuran plane. The crystal packing (Fig. 2) is realized by non-classical intermolecular C–H···O and C–H···Br hydrogen bonds (Table 1). In the crystal structure (Fig. 3) additionally aromatic π–π interactions between the furan ring and the central benzene ring of adjacent molecules are observed. The Cg1···Cg2iv distance is 3.768 (3) Å (Cg1 and Cg2 are the centroides of the C1/C2/C11/O1/C12 furan and the C2/C3/C8/C9/C10/C11 benzene rings, respectively). The molecular packing (Fig. 3) also exhibits intermolecular C–Br···π interactions between the Br atom and the phenyl ring of the phenylsulfinyl substituent, with a C16–Br···Cg3v (3.866 (2) Å ; Cg3 is the centroid of C19-C24 benzene ring).

Experimental

3-Chloroperoxybenzoic acid (77%, 157 mg, 0.7 mmol) was added in small portions to a stirred solution of 2-(4-bromophenyl)-1-(phenylsulfanyl)naphtho[2,1-b]furan (313 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid (yield 78%, m.p. 447-448 K; Rf = 0.61 (hexane-ethyl acetate, 2:1 v/v)). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.
Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The C–H···O and C–H···Br interactions (dotted lines) in the title compound. [Symmetry code: (i) x - 1, y, z; (ii) - x + 2, - y + 1, - z + 1; (iii) x + 1, y, z.]
Fig. 3.
The π–π and C–Br···π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (iv) - x + 1, - y + 2, - z + 1; (v) x + 1, y, z - 1; (vi) x-1, y, z ...

Crystal data

C24H15BrO2SZ = 2
Mr = 447.33F(000) = 452
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2412 (5) ÅCell parameters from 4680 reflections
b = 10.3266 (6) Åθ = 2.3–27.5°
c = 10.7606 (6) ŵ = 2.31 mm1
α = 71.424 (1)°T = 273 K
β = 77.933 (1)°Block, colorless
γ = 79.287 (1)°0.50 × 0.20 × 0.15 mm
V = 943.96 (9) Å3

Data collection

Bruker SMART CCD diffractometer4057 independent reflections
Radiation source: fine-focus sealed tube3482 reflections with I > 2σ(I)
graphiteRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.0°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)k = −13→12
Tmin = 0.392, Tmax = 0.724l = −13→13
8200 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4094P] where P = (Fo2 + 2Fc2)/3
4057 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1.42799 (2)0.59150 (2)0.28002 (2)0.04232 (8)
S0.86347 (5)0.80600 (5)0.75366 (4)0.02428 (10)
O10.67887 (14)0.76607 (13)0.47329 (12)0.0288 (3)
O20.81883 (15)0.94123 (13)0.78284 (13)0.0311 (3)
C10.73992 (19)0.78681 (18)0.65760 (17)0.0242 (4)
C20.57973 (19)0.82284 (18)0.66420 (17)0.0246 (4)
C30.45921 (19)0.86444 (18)0.75651 (18)0.0256 (4)
C40.4754 (2)0.88062 (19)0.87792 (19)0.0290 (4)
H40.57000.86560.90090.035*
C50.3534 (2)0.9183 (2)0.9630 (2)0.0328 (4)
H50.36590.92841.04280.039*
C60.2097 (2)0.9413 (2)0.9292 (2)0.0350 (4)
H60.12750.96600.98730.042*
C70.1900 (2)0.92773 (19)0.8119 (2)0.0342 (4)
H70.09430.94340.79120.041*
C80.3132 (2)0.89007 (18)0.7210 (2)0.0293 (4)
C90.2929 (2)0.8767 (2)0.5981 (2)0.0334 (4)
H90.19720.89550.57680.040*
C100.4087 (2)0.83736 (19)0.5108 (2)0.0330 (4)
H100.39460.82960.43060.040*
C110.5507 (2)0.80912 (18)0.54840 (18)0.0277 (4)
C120.7932 (2)0.75313 (18)0.54145 (18)0.0262 (4)
C130.9424 (2)0.70872 (18)0.47959 (17)0.0259 (4)
C140.9808 (2)0.74611 (19)0.34116 (18)0.0306 (4)
H140.90930.79580.28860.037*
C151.1239 (2)0.7101 (2)0.28158 (19)0.0333 (4)
H151.14880.73560.18950.040*
C161.2295 (2)0.6357 (2)0.36050 (19)0.0298 (4)
C171.1936 (2)0.5935 (2)0.49761 (19)0.0306 (4)
H171.26510.54190.54940.037*
C181.0501 (2)0.62905 (19)0.55646 (18)0.0287 (4)
H181.02480.59960.64840.034*
C190.81395 (18)0.67454 (18)0.90586 (17)0.0234 (3)
C240.8333 (2)0.6950 (2)1.0216 (2)0.0345 (4)
H240.86390.77661.01980.041*
C200.7690 (2)0.5535 (2)0.90810 (19)0.0350 (4)
H200.75600.54030.82980.042*
C210.7434 (3)0.4515 (2)1.0279 (2)0.0379 (5)
H210.71240.37001.03000.045*
C220.7637 (2)0.4706 (2)1.1437 (2)0.0342 (4)
H220.74850.40151.22360.041*
C230.8065 (3)0.5924 (2)1.1409 (2)0.0408 (5)
H230.81760.60611.21960.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.03273 (12)0.05681 (15)0.04193 (13)−0.00596 (9)0.00269 (9)−0.02602 (11)
S0.0218 (2)0.0270 (2)0.0262 (2)−0.00630 (17)−0.00274 (16)−0.00963 (17)
O10.0327 (7)0.0293 (7)0.0271 (6)−0.0064 (5)−0.0082 (5)−0.0083 (5)
O20.0335 (7)0.0263 (7)0.0368 (7)−0.0081 (5)−0.0050 (6)−0.0117 (6)
C10.0242 (9)0.0234 (9)0.0258 (9)−0.0049 (7)−0.0049 (7)−0.0065 (7)
C20.0244 (9)0.0211 (8)0.0283 (9)−0.0059 (7)−0.0063 (7)−0.0043 (7)
C30.0225 (8)0.0191 (8)0.0342 (10)−0.0052 (7)−0.0054 (7)−0.0044 (7)
C40.0222 (9)0.0275 (9)0.0378 (10)−0.0026 (7)−0.0042 (8)−0.0109 (8)
C50.0281 (9)0.0309 (10)0.0409 (11)−0.0041 (8)−0.0012 (8)−0.0150 (8)
C60.0225 (9)0.0276 (10)0.0526 (12)−0.0018 (7)0.0015 (8)−0.0139 (9)
C70.0215 (9)0.0225 (9)0.0569 (13)−0.0032 (7)−0.0091 (8)−0.0071 (9)
C80.0259 (9)0.0189 (9)0.0420 (11)−0.0062 (7)−0.0083 (8)−0.0034 (8)
C90.0288 (10)0.0266 (10)0.0453 (12)−0.0078 (8)−0.0166 (9)−0.0018 (8)
C100.0368 (11)0.0280 (10)0.0375 (11)−0.0101 (8)−0.0167 (9)−0.0039 (8)
C110.0305 (9)0.0226 (9)0.0301 (9)−0.0071 (7)−0.0073 (7)−0.0044 (7)
C120.0313 (9)0.0216 (9)0.0254 (9)−0.0062 (7)−0.0073 (7)−0.0031 (7)
C130.0325 (9)0.0214 (9)0.0252 (9)−0.0063 (7)−0.0029 (7)−0.0080 (7)
C140.0394 (10)0.0257 (9)0.0261 (9)−0.0035 (8)−0.0073 (8)−0.0056 (7)
C150.0432 (11)0.0319 (10)0.0232 (9)−0.0078 (8)−0.0005 (8)−0.0072 (8)
C160.0285 (9)0.0320 (10)0.0327 (10)−0.0077 (8)0.0009 (8)−0.0163 (8)
C170.0340 (10)0.0297 (10)0.0305 (10)−0.0007 (8)−0.0083 (8)−0.0120 (8)
C180.0368 (10)0.0275 (9)0.0227 (9)−0.0050 (8)−0.0042 (8)−0.0085 (7)
C190.0194 (8)0.0249 (9)0.0265 (9)−0.0010 (6)−0.0045 (7)−0.0087 (7)
C240.0450 (11)0.0311 (10)0.0329 (10)−0.0109 (9)−0.0146 (9)−0.0085 (8)
C200.0500 (12)0.0320 (10)0.0270 (10)−0.0104 (9)−0.0055 (9)−0.0117 (8)
C210.0525 (13)0.0269 (10)0.0360 (11)−0.0115 (9)−0.0038 (9)−0.0100 (8)
C220.0388 (11)0.0305 (10)0.0289 (10)−0.0020 (8)−0.0056 (8)−0.0038 (8)
C230.0583 (14)0.0400 (12)0.0282 (10)−0.0096 (10)−0.0168 (10)−0.0075 (9)

Geometric parameters (Å, °)

Br—C161.8973 (19)C10—H100.9300
S—O21.4933 (13)C12—C131.460 (3)
S—C11.7662 (18)C13—C141.399 (3)
S—C191.7987 (18)C13—C181.400 (3)
O1—C121.371 (2)C14—C151.382 (3)
O1—C111.373 (2)C14—H140.9300
C1—C121.372 (2)C15—C161.384 (3)
C1—C21.450 (2)C15—H150.9300
C2—C111.382 (3)C16—C171.384 (3)
C2—C31.429 (2)C17—C181.382 (3)
C3—C41.410 (3)C17—H170.9300
C3—C81.434 (3)C18—H180.9300
C4—C51.375 (3)C19—C241.380 (3)
C4—H40.9300C19—C201.381 (3)
C5—C61.408 (3)C24—C231.390 (3)
C5—H50.9300C24—H240.9300
C6—C71.365 (3)C20—C211.388 (3)
C6—H60.9300C20—H200.9300
C7—C81.419 (3)C21—C221.376 (3)
C7—H70.9300C21—H210.9300
C8—C91.426 (3)C22—C231.376 (3)
C9—C101.361 (3)C22—H220.9300
C9—H90.9300C23—H230.9300
C10—C111.405 (3)
O2—S—C1109.42 (8)O1—C12—C13116.43 (15)
O2—S—C19107.01 (8)C1—C12—C13133.04 (17)
C1—S—C1999.88 (8)C14—C13—C18118.53 (17)
C12—O1—C11106.49 (14)C14—C13—C12120.29 (17)
C12—C1—C2106.91 (15)C18—C13—C12121.17 (16)
C12—C1—S120.79 (14)C15—C14—C13120.79 (18)
C2—C1—S131.42 (14)C15—C14—H14119.6
C11—C2—C3119.50 (16)C13—C14—H14119.6
C11—C2—C1104.65 (16)C14—C15—C16119.25 (17)
C3—C2—C1135.85 (17)C14—C15—H15120.4
C4—C3—C2124.40 (16)C16—C15—H15120.4
C4—C3—C8119.09 (17)C17—C16—C15121.29 (18)
C2—C3—C8116.51 (17)C17—C16—Br119.08 (15)
C5—C4—C3121.00 (17)C15—C16—Br119.63 (14)
C5—C4—H4119.5C18—C17—C16119.12 (18)
C3—C4—H4119.5C18—C17—H17120.4
C4—C5—C6119.96 (19)C16—C17—H17120.4
C4—C5—H5120.0C17—C18—C13120.93 (17)
C6—C5—H5120.0C17—C18—H18119.5
C7—C6—C5120.60 (18)C13—C18—H18119.5
C7—C6—H6119.7C24—C19—C20120.56 (17)
C5—C6—H6119.7C24—C19—S116.87 (14)
C6—C7—C8121.14 (18)C20—C19—S122.40 (14)
C6—C7—H7119.4C19—C24—C23119.21 (18)
C8—C7—H7119.4C19—C24—H24120.4
C7—C8—C9121.21 (18)C23—C24—H24120.4
C7—C8—C3118.20 (18)C19—C20—C21119.64 (18)
C9—C8—C3120.59 (18)C19—C20—H20120.2
C10—C9—C8122.32 (18)C21—C20—H20120.2
C10—C9—H9118.8C22—C21—C20120.15 (19)
C8—C9—H9118.8C22—C21—H21119.9
C9—C10—C11116.50 (18)C20—C21—H21119.9
C9—C10—H10121.7C23—C22—C21119.87 (19)
C11—C10—H10121.7C23—C22—H22120.1
O1—C11—C2111.42 (16)C21—C22—H22120.1
O1—C11—C10124.05 (17)C22—C23—C24120.55 (19)
C2—C11—C10124.53 (18)C22—C23—H23119.7
O1—C12—C1110.53 (16)C24—C23—H23119.7
O2—S—C1—C12128.31 (15)C9—C10—C11—C2−2.1 (3)
C19—S—C1—C12−119.58 (15)C11—O1—C12—C10.08 (19)
O2—S—C1—C2−39.51 (19)C11—O1—C12—C13−179.65 (15)
C19—S—C1—C272.60 (18)C2—C1—C12—O10.4 (2)
C12—C1—C2—C11−0.79 (19)S—C1—C12—O1−170.03 (12)
S—C1—C2—C11168.29 (14)C2—C1—C12—C13−179.88 (18)
C12—C1—C2—C3178.88 (19)S—C1—C12—C139.6 (3)
S—C1—C2—C3−12.0 (3)O1—C12—C13—C1432.4 (2)
C11—C2—C3—C4179.44 (17)C1—C12—C13—C14−147.3 (2)
C1—C2—C3—C4−0.2 (3)O1—C12—C13—C18−148.06 (17)
C11—C2—C3—C8−0.2 (2)C1—C12—C13—C1832.3 (3)
C1—C2—C3—C8−179.86 (19)C18—C13—C14—C15−2.7 (3)
C2—C3—C4—C5−178.61 (17)C12—C13—C14—C15176.95 (17)
C8—C3—C4—C51.0 (3)C13—C14—C15—C160.3 (3)
C3—C4—C5—C6−0.1 (3)C14—C15—C16—C171.8 (3)
C4—C5—C6—C7−0.5 (3)C14—C15—C16—Br−177.73 (15)
C5—C6—C7—C80.0 (3)C15—C16—C17—C18−1.4 (3)
C6—C7—C8—C9−179.59 (18)Br—C16—C17—C18178.17 (14)
C6—C7—C8—C31.0 (3)C16—C17—C18—C13−1.1 (3)
C4—C3—C8—C7−1.5 (3)C14—C13—C18—C173.1 (3)
C2—C3—C8—C7178.21 (16)C12—C13—C18—C17−176.49 (17)
C4—C3—C8—C9179.06 (17)O2—S—C19—C24−37.46 (17)
C2—C3—C8—C9−1.2 (3)C1—S—C19—C24−151.42 (15)
C7—C8—C9—C10−178.31 (18)O2—S—C19—C20147.24 (16)
C3—C8—C9—C101.1 (3)C1—S—C19—C2033.28 (18)
C8—C9—C10—C110.5 (3)C20—C19—C24—C23−0.2 (3)
C12—O1—C11—C2−0.62 (19)S—C19—C24—C23−175.62 (17)
C12—O1—C11—C10178.53 (17)C24—C19—C20—C21−0.1 (3)
C3—C2—C11—O1−178.87 (15)S—C19—C20—C21175.04 (16)
C1—C2—C11—O10.9 (2)C19—C20—C21—C22−0.5 (3)
C3—C2—C11—C102.0 (3)C20—C21—C22—C231.4 (3)
C1—C2—C11—C10−178.27 (17)C21—C22—C23—C24−1.7 (3)
C9—C10—C11—O1178.85 (16)C19—C24—C23—C221.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.573.482 (2)167
C20—H20···Brii0.932.983.760 (2)143

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2130).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goel, A. & Dixit, M. (2004). Tetrahedron Lett 45, 8819–8821.
  • Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.
  • Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett 46, 4757–4760.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography