PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m961.
Published online 2009 July 22. doi:  10.1107/S160053680902426X
PMCID: PMC2977395

1,4-Diferrocenyl-2-methyl­piperazine-1,4-diium bis­(trifluoro­acetate)

Abstract

In the title compound, [Fe2(C5H5)2(C17H24N2)](CF3COO)2, the cation possesses a crystallographically imposed inversion centre. The methyl group is disordered over two positions of equal occupancy. The Fe—C bond lengths to the two cyclo­penta­diene rings vary from 2.025 (6) to 2.044 (6) Å. Inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature

For the applications of ferrocene derivatives, see: Yang et al. (2002 [triangle]); Togni & Hayashi (1995 [triangle]); Long (1995 [triangle]); Roberto et al. (2000 [triangle]). For the crystal structure of related compounds, see: Hess et al. (1999 [triangle]); Base et al. (2002 [triangle]); For the synthetic strategy, see: Chen (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m961-scheme1.jpg

Experimental

Crystal data

  • [Fe2(C5H5)2(C17H24N2)](C2F3O2)2
  • M r = 724.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m961-efi1.jpg
  • a = 11.922 (3) Å
  • b = 9.7977 (16) Å
  • c = 13.628 (4) Å
  • β = 99.998 (15)°
  • V = 1567.7 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.00 mm−1
  • T = 293 K
  • 0.27 × 0.25 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.771, T max = 0.819
  • 15611 measured reflections
  • 3592 independent reflections
  • 3117 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.224
  • S = 1.07
  • 3592 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 1.06 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902426X/rz2338sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902426X/rz2338Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University.

supplementary crystallographic information

Comment

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis (Yang et al., 2002), non-linear optical (NLO) materials (Long, 1995; Roberto et al., 2000), organic or organometallic synthesis and materials (Togni & Hayashi, 1995), and so on. As part of our on-going studies on new ferrocene compounds, the crystal structure of the title compound is reported herein.

The title compound (Fig. 1) consists of centrosymmetric 1,4-ferrocenyl-2-methylpiperazinium cations and trifluoroacetate anions in the stroichiometric ratio of 1:2. The methyl group of the cation is disordered over two positions of equal occupancy related by the symmetry operator (-x, 1-y, 1-z). The deformation of the 1,4-ferrocenyl-2-methylpiperazinium cation is reflected in the values of the C12A—C13—N1, C13—N1—C12, N1—C12—C13A angles, which are 109.8 (4), 110.0 (3), 111.9 (4)°, respectively [symmetry code: (A) -x, 1-y, 1-z]. The Fe—C distances to the two cyclopentadiene rings are normal, ranging from 2.025 (6) to 2.044 (6) Å (Hess et al., 1999; Base et al., 2002). The two cyclopentadiene rings are nearly parallel, forming a dihedral angle of 1.1 (2)°. In the crystal packing (Fig. 2), intermolecular N—H···O and C—H···O interactions (Table 1) link cations and anions into a hydrogen-bonded network, which stabilizes the crystal packing (Fig.2).

Experimental

The preparation of S-1,4-ferrocenyl-2-methylpiperazine is analogous to that of 2,2'-diferrocenyl-5,5'-(m-phenylene)di-2H-tetrazole (Chen, 2009). To a mixture of [Fe(C5H5)(C5H4)N+(CH3)3I-] (10 mmol) in H2O (50 ml) was added S-2-methylpiperazine (5 mmol) and the mixture was heated to reflux temperature for 5 h. Then, the formed precipitate was filtered, the obtained yellow solid was purified enough without further disposal (yield: 78%). For the preparation of the title compound, a solution of trifluoroacetic acid (4 mmol) in ethanol was added to a solution of S-1,4-ferrocenyl-2-methylpiperazine (2 mmol) in dichloromethane/ethanol (1:1 v/v) and the mixture stirred for 1 h at room temperature. Red crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature after 5 days.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the parent atoms, with C—H = 0.96-0.98 Å, N—H = 0.91 Å and with Uiso(H) = 1.2Uiso(C, N) or 1.2Uiso(C) for methyl H atoms. The methyl group is disordered over two positions related by a centre of symmetry, with site occupancy factors of 0.5.

Figures

Fig. 1.
The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operator (-x, 1-y, 1-z). Only one component of the disordered methyl group is shown.
Fig. 2.
Packing diagram of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines. Only one component of the disordered methyl group is shown.

Crystal data

[Fe2(C5H5)2(C17H24N2)](C2F3O2)2F(000) = 744.0
Mr = 724.30Dx = 1.534 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3933 reflections
a = 11.922 (3) Åθ = 2.6–27.5°
b = 9.7977 (16) ŵ = 1.00 mm1
c = 13.628 (4) ÅT = 293 K
β = 99.998 (15)°Block, red
V = 1567.7 (7) Å30.27 × 0.25 × 0.20 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer3592 independent reflections
Radiation source: fine-focus sealed tube3117 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = −15→15
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.771, Tmax = 0.819l = −17→17
15611 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1088P)2 + 3.5578P] where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe10.07028 (5)0.09197 (7)0.20528 (5)0.0426 (3)
N10.0206 (3)0.3711 (4)0.4525 (3)0.0398 (8)
H1A−0.04080.32340.46510.048*
C10.0197 (4)0.2288 (5)0.3010 (3)0.0451 (10)
C130.0910 (4)0.4133 (5)0.5509 (4)0.0488 (11)
H13A0.15870.46110.53940.059*
H13B0.11470.33290.59070.059*0.50
C70.2223 (5)0.0916 (6)0.1564 (5)0.0591 (13)
H70.25940.17180.13330.071*
C12−0.0211 (4)0.4941 (5)0.3933 (3)0.0449 (10)
H12A−0.06750.46570.33100.054*
H12B0.04350.54470.37770.054*
C110.0902 (4)0.2780 (5)0.3958 (3)0.0469 (10)
H11A0.15560.32760.38090.056*
H11B0.11780.20040.43720.056*
C80.1457 (5)0.0064 (6)0.0967 (4)0.0614 (14)
H80.12010.01600.02470.074*
C5−0.0521 (5)0.1107 (6)0.2920 (4)0.0583 (14)
H5−0.06410.04950.34620.070*
C20.0127 (5)0.2876 (6)0.2044 (4)0.0569 (13)
H20.05270.36940.18760.068*
C60.2371 (5)0.0449 (7)0.2551 (5)0.0642 (15)
H60.28640.08640.31230.077*
C90.1104 (6)−0.0962 (6)0.1582 (6)0.0747 (19)
H90.0572−0.17100.13670.090*
C3−0.0642 (5)0.2062 (7)0.1373 (5)0.0707 (18)
H3−0.08510.22150.06540.085*
C4−0.1032 (5)0.0992 (7)0.1902 (6)0.075 (2)
H4−0.15600.02720.16160.090*
C100.1680 (6)−0.0701 (7)0.2578 (5)0.0748 (19)
H100.1612−0.12400.31700.090*
O10.8567 (4)0.2055 (6)0.4984 (3)0.0771 (13)
O20.7403 (5)0.3147 (6)0.3831 (5)0.1058 (19)
C150.6838 (6)0.1017 (7)0.4333 (6)0.0715 (17)
C140.7705 (5)0.2200 (7)0.4397 (5)0.0664 (15)
F20.6434 (12)0.0677 (12)0.3507 (5)0.283 (8)
F30.6053 (8)0.1223 (11)0.4759 (11)0.257 (6)
F10.7170 (8)−0.0077 (8)0.4721 (10)0.240 (6)
C160.1208 (9)0.2777 (11)0.6216 (8)0.056 (2)0.50
H16A0.05150.23100.62760.084*0.50
H16B0.15900.30510.68650.084*0.50
H16C0.16920.21770.59200.084*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0450 (4)0.0407 (4)0.0431 (4)0.0050 (3)0.0104 (3)−0.0119 (3)
N10.0385 (18)0.0455 (19)0.0358 (17)−0.0006 (15)0.0072 (14)−0.0136 (15)
C10.047 (2)0.044 (2)0.046 (2)0.0033 (19)0.0123 (19)−0.0150 (19)
C130.045 (2)0.057 (3)0.042 (2)0.005 (2)−0.0001 (18)−0.015 (2)
C70.055 (3)0.060 (3)0.068 (3)0.001 (2)0.027 (3)−0.010 (3)
C120.050 (2)0.048 (2)0.037 (2)0.003 (2)0.0074 (18)−0.0122 (19)
C110.047 (2)0.053 (3)0.042 (2)0.005 (2)0.0113 (18)−0.014 (2)
C80.067 (3)0.070 (3)0.051 (3)0.009 (3)0.019 (2)−0.020 (3)
C50.055 (3)0.057 (3)0.069 (3)−0.007 (2)0.025 (3)−0.027 (3)
C20.073 (3)0.048 (3)0.049 (3)0.020 (2)0.010 (2)−0.010 (2)
C60.052 (3)0.072 (4)0.067 (3)0.016 (3)0.006 (2)−0.013 (3)
C90.075 (4)0.042 (3)0.113 (6)0.002 (3)0.031 (4)−0.024 (3)
C30.072 (4)0.078 (4)0.054 (3)0.030 (3)−0.010 (3)−0.024 (3)
C40.041 (3)0.086 (4)0.096 (5)−0.003 (3)0.006 (3)−0.056 (4)
C100.090 (5)0.061 (4)0.079 (4)0.035 (3)0.030 (4)0.021 (3)
O10.063 (2)0.113 (4)0.057 (2)−0.015 (2)0.017 (2)−0.009 (2)
O20.104 (4)0.068 (3)0.138 (5)0.003 (3)0.001 (4)0.025 (3)
C150.063 (4)0.069 (4)0.082 (4)−0.015 (3)0.013 (3)−0.001 (3)
C140.063 (3)0.076 (4)0.062 (3)0.004 (3)0.018 (3)−0.021 (3)
F20.427 (15)0.321 (12)0.086 (4)−0.306 (13)0.004 (7)−0.023 (6)
F30.156 (7)0.224 (10)0.436 (18)−0.078 (7)0.181 (10)−0.056 (11)
F10.200 (8)0.099 (5)0.378 (15)−0.057 (5)−0.075 (9)0.070 (7)
C160.061 (6)0.050 (5)0.053 (5)0.008 (5)0.002 (4)−0.012 (4)

Geometric parameters (Å, °)

Fe1—C102.025 (6)C12—H12B0.9700
Fe1—C12.034 (4)C11—H11A0.9700
Fe1—C22.035 (5)C11—H11B0.9700
Fe1—C72.036 (5)C8—C91.419 (9)
Fe1—C92.036 (5)C8—H80.9800
Fe1—C62.039 (6)C5—C41.420 (9)
Fe1—C52.040 (5)C5—H50.9800
Fe1—C82.041 (5)C2—C31.422 (8)
Fe1—C32.041 (6)C2—H20.9800
Fe1—C42.044 (6)C6—C101.400 (10)
N1—C121.487 (6)C6—H60.9800
N1—C131.511 (5)C9—C101.433 (10)
N1—C111.529 (5)C9—H90.9800
N1—H1A0.9100C3—C41.397 (10)
C1—C21.426 (7)C3—H30.9800
C1—C51.432 (7)C4—H40.9800
C1—C111.493 (6)C10—H100.9800
C13—C12i1.521 (6)O1—C141.197 (8)
C13—C161.643 (12)O2—C141.220 (8)
C13—H13A0.9700C15—F21.192 (9)
C13—H13B0.9700C15—F31.201 (11)
C7—C81.391 (8)C15—F11.229 (10)
C7—C61.402 (9)C15—C141.546 (9)
C7—H70.9800C16—H16A0.9600
C12—C13i1.521 (6)C16—H16B0.9600
C12—H12A0.9700C16—H16C0.9600
C10—Fe1—C1120.4 (3)C13i—C12—H12A109.2
C10—Fe1—C2155.9 (3)N1—C12—H12B109.2
C1—Fe1—C241.0 (2)C13i—C12—H12B109.2
C10—Fe1—C767.9 (3)H12A—C12—H12B107.9
C1—Fe1—C7126.2 (2)C1—C11—N1110.9 (4)
C2—Fe1—C7108.6 (2)C1—C11—H11A109.5
C10—Fe1—C941.3 (3)N1—C11—H11A109.5
C1—Fe1—C9155.6 (3)C1—C11—H11B109.5
C2—Fe1—C9161.5 (3)N1—C11—H11B109.5
C7—Fe1—C967.9 (3)H11A—C11—H11B108.0
C10—Fe1—C640.3 (3)C7—C8—C9108.1 (5)
C1—Fe1—C6108.4 (2)C7—C8—Fe169.9 (3)
C2—Fe1—C6121.5 (3)C9—C8—Fe169.5 (3)
C7—Fe1—C640.2 (2)C7—C8—H8125.9
C9—Fe1—C668.4 (3)C9—C8—H8125.9
C10—Fe1—C5106.9 (3)Fe1—C8—H8125.9
C1—Fe1—C541.2 (2)C4—C5—C1107.2 (6)
C2—Fe1—C569.1 (2)C4—C5—Fe169.8 (3)
C7—Fe1—C5163.1 (2)C1—C5—Fe169.2 (3)
C9—Fe1—C5119.7 (3)C4—C5—H5126.4
C6—Fe1—C5125.6 (3)C1—C5—H5126.4
C10—Fe1—C868.6 (3)Fe1—C5—H5126.4
C1—Fe1—C8162.4 (2)C3—C2—C1107.2 (6)
C2—Fe1—C8125.0 (2)C3—C2—Fe169.8 (3)
C7—Fe1—C839.9 (2)C1—C2—Fe169.4 (3)
C9—Fe1—C840.8 (3)C3—C2—H2126.4
C6—Fe1—C867.8 (2)C1—C2—H2126.4
C5—Fe1—C8155.1 (2)Fe1—C2—H2126.4
C10—Fe1—C3161.6 (3)C10—C6—C7108.1 (6)
C1—Fe1—C368.5 (2)C10—C6—Fe169.3 (3)
C2—Fe1—C340.8 (2)C7—C6—Fe169.8 (3)
C7—Fe1—C3121.7 (3)C10—C6—H6125.9
C9—Fe1—C3124.2 (3)C7—C6—H6125.9
C6—Fe1—C3156.7 (3)Fe1—C6—H6125.9
C5—Fe1—C368.2 (3)C8—C9—C10106.9 (6)
C8—Fe1—C3107.8 (2)C8—C9—Fe169.8 (3)
C10—Fe1—C4124.9 (3)C10—C9—Fe168.9 (3)
C1—Fe1—C468.5 (2)C8—C9—H9126.5
C2—Fe1—C468.4 (3)C10—C9—H9126.5
C7—Fe1—C4155.5 (3)Fe1—C9—H9126.5
C9—Fe1—C4106.8 (3)C4—C3—C2108.9 (5)
C6—Fe1—C4162.3 (3)C4—C3—Fe170.1 (3)
C5—Fe1—C440.7 (3)C2—C3—Fe169.4 (3)
C8—Fe1—C4120.5 (2)C4—C3—H3125.6
C3—Fe1—C440.0 (3)C2—C3—H3125.6
C12—N1—C13110.0 (3)Fe1—C3—H3125.6
C12—N1—C11111.6 (3)C3—C4—C5108.7 (5)
C13—N1—C11110.2 (3)C3—C4—Fe169.9 (3)
C12—N1—H1A108.3C5—C4—Fe169.5 (3)
C13—N1—H1A108.3C3—C4—H4125.7
C11—N1—H1A108.3C5—C4—H4125.7
C2—C1—C5108.0 (5)Fe1—C4—H4125.7
C2—C1—C11127.0 (5)C6—C10—C9107.8 (6)
C5—C1—C11125.0 (5)C6—C10—Fe170.4 (3)
C2—C1—Fe169.5 (3)C9—C10—Fe169.8 (3)
C5—C1—Fe169.7 (3)C6—C10—H10126.1
C11—C1—Fe1125.7 (3)C9—C10—H10126.1
N1—C13—C12i109.8 (4)Fe1—C10—H10126.1
N1—C13—C16109.2 (5)F2—C15—F3106.4 (11)
C12i—C13—C16105.7 (5)F2—C15—F1102.1 (10)
N1—C13—H13A109.7F3—C15—F199.1 (10)
C12i—C13—H13A109.7F2—C15—C14114.8 (7)
C16—C13—H13A112.6F3—C15—C14114.6 (7)
N1—C13—H13B109.7F1—C15—C14117.8 (7)
C12i—C13—H13B109.7O1—C14—O2129.7 (7)
H13A—C13—H13B108.2O1—C14—C15115.9 (7)
C8—C7—C6109.0 (5)O2—C14—C15114.4 (6)
C8—C7—Fe170.2 (3)C13—C16—H16A109.5
C6—C7—Fe170.0 (3)C13—C16—H16B109.5
C8—C7—H7125.5H16A—C16—H16B109.5
C6—C7—H7125.5C13—C16—H16C109.5
Fe1—C7—H7125.5H16A—C16—H16C109.5
N1—C12—C13i111.9 (4)H16B—C16—H16C109.5
N1—C12—H12A109.2

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.911.802.696 (6)169
C4—H4···O2iii0.982.353.306 (9)163

Symmetry codes: (ii) x−1, y, z; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2338).

References

  • Base, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun.5, 46–50.
  • Chen, F. (2009). Acta Cryst. E65, m788. [PMC free article] [PubMed]
  • Hess, A., Brosch, O., Weyhermüller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem.589, 75–84.
  • Long, N. J. (1995). Angew. Chem. Int. Ed. Engl.34, 21–38.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Roberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775–1788.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Togni, A. & Hayashi, T. (1995). In Ferrocenes Weinheim: VCH.
  • Yang, J.-X., Tian, Y.-P., Liu, Q.-L., Xie, Y.-S., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2002). Acta Cryst. C58, m43–m44. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography