PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m942–m943.
Published online 2009 July 18. doi:  10.1107/S1600536809027330
PMCID: PMC2977385

{2,2′-[o-Phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}dipyridinecobalt(III) perchlorate

Abstract

The title compound, [Co(C20H14N2O2)(C5H5N)2]ClO4 or [Co(salophen)(py)2]ClO4, where salophen is o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolate and py is pyridine, contains a six-coordinate mononuclear cobalt(III) atom. The two phenolic O atoms and the two imine N atoms are located in cis positions. There are two pyridine mol­ecules attached to the metal atom, filling the axial sites with a mutually perpendicular disposition of the pyridine planes [86.11 (5)°]. The Co complexes are stacked in layers parallel to (100). Coherence of the structure is provided by a variety of C—H(...)O interactions between the complexes and the perchlor­ate counter anion.

Related literature

For general background to transition metal Schiff-base complexes with a tetra­dentate N2O2 ligand configuration, see: Schenk et al. (2007 [triangle]); Yamada (1999 [triangle]). For related Co complexes, see: Amirnasr et al. (2001 [triangle]); Khandar et al. (2007 [triangle]). For oxygenation and oxidation reactions of related Co complexes, see: Nishinaga & Tomita (1980 [triangle]); Park et al. (1998 [triangle]); Speiser & Stahl (1995 [triangle]). For the anti­microbial activity of related Co complexes, see: Kumar et al. (2009 [triangle]); Miodragović et al. (2006 [triangle]); Mishra et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m942-scheme1.jpg

Experimental

Crystal data

  • [Co(C20H14N2O2)(C5H5N)2]ClO4
  • M r = 630.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m942-efi1.jpg
  • a = 33.4032 (16) Å
  • b = 10.6586 (5) Å
  • c = 16.3498 (8) Å
  • β = 112.179 (1)°
  • V = 5390.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 200 K
  • 0.44 × 0.18 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.86, T max = 0.95
  • 24638 measured reflections
  • 7804 independent reflections
  • 6268 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.086
  • S = 1.03
  • 7804 reflections
  • 379 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027330/dn2470sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027330/dn2470Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support of this work by the Isfahan University of Technology Research Council is gratefully acknowledged.

supplementary crystallographic information

Comment

Transition metal Schiff-base complexes with the tetradentate ligand configuration N2O2 have been extensively studied (Yamada et al., 1999; Schenk et al., 2007). Some of these complexes have interesting applications, e.g., their ability to reversibly bind oxygen, and their use in catalysis for oxygenation and oxidation reactions of organic compounds (Nishinaga et al., 1980; Park et al., 1998; Speiser et al., 1995). Among these metal complexes, cobalt(III) Schiff base complexes with two amines in axial positions have especially attracted interest due to their ability as antimicrobial agents (Kumar et al., 2009; Miodragović et al., 2006; Mishra et al., 2008). The synthesis and reactivity of these complexes have also been playing an important part in the development of coordination chemistry. In this context, we herein report the synthesis and structure of the title compound, [Co(salophen)(py)2]ClO4, (I), and make a brief comparison with reported structures.

As illustrated in Fig. 1, compound (I) is the perchlorate salt of a mononuclear cobalt(III) complex cation. Bond distances and angles are given in the supplementary materials. The Schiff base ligand acts as a tetradentate ligand. The coordination polyhedron about Co is approximately octahedral, with a point group symmetry close to Cs. The three trans angles at the Co(III) centre are close to 180° and all other angles are close to 90°, ranging from 84.41 (5)° to 95.86 (5)°. The Co–O and Co–N distances of the coordinated salophen in the equatorial plane, Co(1)–O(1) = 1.8833 (10) Å, Co(1)–O(2) = 1.8806 (10) Å, Co(1)–N(1) = 1.8947 (12) Å, Co(1)–N(2) = 1.8953 (12) Å, are comparable with the Co–O and Co–N distances found in the related complexes [CoIII(salophen)(morpholine)2]ClO4 and [CoIII(salophen)(pyrrolidine)2]ClO4, [Co–Oav = 1.8815 (2) Å, Co–Nav = 1.8925 (2) Å, Amirnasr et al., 2001], and [CoIII(salophen)(4-picoline)2]ClO4.CH2Cl2 [Co–Oav = 1.888 (3) Å, Co–Nav = 1.906 (4) Å, Khandar et al., 2007]. The salophen ligands in the title compound and in [CoIII(salophen)(4-picoline)2]ClO4.CH2Cl2 [Khandar et al., 2007] share a similar strong distortion, each having one phenolate moiety distinctly bent off from the least-squares plane of the remaining salophen ligand atoms, as is schematically shown by the chemical diagram of (I) and by the fact that in (I) the angle between the two least squares planes of phenolate O(1)—C(1)—C(2)—C(3)—C(4)—C(5)—C(6) and the rest of the salophen ligand is 25.27 (6)°. The two complexes differ however in the mutual orientations of the pyridine/picoline ligands – nearly perpendicular in (I) (interplanar angle 86.11 (5)°), but almost parallel in the picoline compound.

In the crystal structure of (I), the Co complexes are stacked in layers parallel to (100) with four layers per unit cell and Co at x = 0.107, 0.393, 0.607, and 0.823 (Fig. 2). Coherence of the structure is provided by a variety of C—H···O interactions (Table 1; contains only interactions with C—H···O angles > 110°) and by π-π stacking between symmetry equivalent pairs of pyridine rings N(4) through C(30) (centroid–centroid distance 3.652 (1) Å, ring–ring dihedral angle 10.5°, ring slippage 0.51 Å, shortest interatomic distances C30–C30(-x,y,1/2 - z) = 3.428 (3) Å and N4–C29(-x,y,1/2 - z) = 3.534 (2) Å).

Experimental

To a stirring solution of Co(CH3COO)2.4H2O (0.125 g, 0.5 mmol) in methanol (25 ml) was added an equimolar of salophen (0.158 g, 0.5 mmol). The red solution turned brown immediately upon the formation of [CoII(salophen)] complex. To this solution was added 4 mmol of pyridine, and air was bubbled through the reaction mixture for about 3 h. To the resulting brown solution was then added 0.5 mmol (0.0615 g) of NaClO4and stirred for 5 minutes. Brown crystals of the complex suitable for X-ray crystallography were obtained after three days by slow evaporation of the methanol. The crystals were filtered off and washed with a small amount of cold methanol and dried under vacuum. Yield: 80%.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95Å and Uiso(H) = 1.2 Ueq.

Figures

Fig. 1.
The ORTEP drawing of (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I), viewed along the b axis.

Crystal data

[Co(C20H14N2O2)(C5H5N)2]ClO4F(000) = 2592
Mr = 630.91Dx = 1.555 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9429 reflections
a = 33.4032 (16) Åθ = 2.3–30.1°
b = 10.6586 (5) ŵ = 0.79 mm1
c = 16.3498 (8) ÅT = 200 K
β = 112.179 (1)°Prism, brown
V = 5390.3 (4) Å30.44 × 0.18 × 0.07 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer7804 independent reflections
Radiation source: fine-focus sealed tube6268 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −46→31
Tmin = 0.86, Tmax = 0.95k = −14→14
24638 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0413P)2 + 3.8856P] where P = (Fo2 + 2Fc2)/3
7804 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. Thin prisms from methanol. Bruker Kappa APEXII CCD diffractometer, full-sphere data collection. The temperature of 200 K was selected because crystals cracked at 100 K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.107115 (6)0.532208 (17)0.407335 (12)0.02150 (6)
O10.05857 (3)0.63179 (9)0.39475 (7)0.0278 (2)
O20.08497 (3)0.42434 (10)0.47107 (7)0.0271 (2)
N10.12843 (4)0.64456 (11)0.34353 (8)0.0235 (2)
N20.15559 (4)0.43132 (11)0.41820 (8)0.0226 (2)
N30.14061 (4)0.62115 (11)0.51660 (8)0.0253 (2)
N40.07267 (4)0.44507 (11)0.29606 (8)0.0244 (2)
C10.05714 (5)0.75357 (13)0.38370 (10)0.0264 (3)
C20.02490 (5)0.82090 (15)0.40153 (12)0.0369 (4)
H20.00470.77640.41890.044*
C30.02208 (6)0.94902 (16)0.39429 (14)0.0433 (4)
H30.00030.99180.40730.052*
C40.05072 (6)1.01725 (16)0.36813 (14)0.0437 (4)
H40.04891.10610.36440.052*
C50.08176 (6)0.95457 (15)0.34766 (12)0.0369 (3)
H50.10101.00100.32870.044*
C60.08562 (5)0.82224 (13)0.35431 (10)0.0276 (3)
C70.11850 (5)0.76275 (13)0.33164 (9)0.0265 (3)
H70.13410.81330.30610.032*
C80.16154 (4)0.58912 (13)0.32072 (9)0.0243 (2)
C90.17806 (5)0.63868 (15)0.26110 (10)0.0294 (3)
H90.16670.71440.23050.035*
C100.21117 (5)0.57614 (16)0.24715 (10)0.0318 (3)
H100.22220.60810.20560.038*
C110.22845 (5)0.46652 (15)0.29348 (11)0.0316 (3)
H110.25200.42640.28490.038*
C120.21183 (5)0.41546 (15)0.35168 (10)0.0289 (3)
H120.22360.34030.38270.035*
C130.17757 (4)0.47570 (13)0.36432 (9)0.0234 (2)
C140.16751 (5)0.33115 (13)0.46680 (9)0.0251 (3)
H140.19380.29220.47080.030*
C150.14396 (5)0.27522 (13)0.51476 (9)0.0263 (3)
C160.16013 (6)0.16128 (15)0.55987 (10)0.0339 (3)
H160.18650.12830.55990.041*
C170.13848 (6)0.09751 (16)0.60357 (11)0.0399 (4)
H170.14960.02080.63290.048*
C180.09986 (6)0.14678 (16)0.60434 (11)0.0375 (3)
H180.08480.10310.63460.045*
C190.08332 (5)0.25753 (15)0.56190 (10)0.0320 (3)
H190.05740.29020.56470.038*
C200.10420 (5)0.32399 (13)0.51409 (9)0.0252 (3)
C210.12183 (5)0.64920 (15)0.57425 (10)0.0321 (3)
H210.09380.61760.56400.039*
C220.14240 (6)0.72265 (17)0.64774 (11)0.0385 (4)
H220.12860.74080.68760.046*
C230.18298 (6)0.76947 (16)0.66309 (11)0.0373 (3)
H230.19720.82170.71270.045*
C240.20263 (5)0.73919 (16)0.60521 (11)0.0352 (3)
H240.23080.76930.61470.042*
C250.18075 (5)0.66448 (15)0.53339 (10)0.0299 (3)
H250.19460.64270.49420.036*
C260.07423 (5)0.31985 (14)0.28919 (10)0.0301 (3)
H260.09320.27350.33810.036*
C270.04929 (6)0.25592 (16)0.21358 (11)0.0377 (4)
H270.05130.16720.21060.045*
C280.02138 (5)0.32254 (17)0.14223 (11)0.0373 (3)
H280.00360.28050.08990.045*
C290.01988 (5)0.45122 (17)0.14867 (11)0.0357 (3)
H290.00130.49940.10040.043*
C300.04581 (5)0.50935 (15)0.22635 (10)0.0309 (3)
H300.04450.59810.23050.037*
Cl10.203707 (13)0.02747 (4)0.38080 (2)0.03354 (9)
O30.24141 (5)0.10462 (14)0.41527 (11)0.0619 (4)
O40.16645 (5)0.10872 (14)0.34374 (11)0.0570 (4)
O50.19906 (7)−0.04830 (17)0.44767 (11)0.0740 (5)
O60.20593 (6)−0.04926 (15)0.31171 (11)0.0634 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01951 (9)0.02155 (9)0.02323 (10)−0.00096 (7)0.00782 (7)0.00160 (7)
O10.0234 (5)0.0236 (4)0.0379 (6)0.0002 (4)0.0133 (4)0.0029 (4)
O20.0244 (5)0.0270 (5)0.0314 (5)−0.0001 (4)0.0122 (4)0.0058 (4)
N10.0224 (5)0.0250 (5)0.0231 (5)−0.0015 (4)0.0086 (4)0.0012 (4)
N20.0202 (5)0.0240 (5)0.0222 (5)−0.0011 (4)0.0066 (4)−0.0006 (4)
N30.0261 (5)0.0261 (5)0.0240 (5)−0.0002 (4)0.0097 (4)0.0004 (4)
N40.0198 (5)0.0269 (5)0.0251 (5)−0.0012 (4)0.0069 (4)0.0010 (4)
C10.0236 (6)0.0248 (6)0.0294 (7)0.0008 (5)0.0085 (5)0.0021 (5)
C20.0328 (8)0.0305 (7)0.0540 (10)0.0039 (6)0.0240 (7)0.0056 (7)
C30.0427 (9)0.0335 (8)0.0627 (12)0.0093 (7)0.0300 (9)0.0058 (8)
C40.0489 (10)0.0247 (7)0.0651 (12)0.0060 (7)0.0299 (9)0.0058 (7)
C50.0384 (8)0.0264 (6)0.0504 (10)0.0007 (6)0.0219 (7)0.0059 (7)
C60.0273 (7)0.0244 (6)0.0310 (7)0.0007 (5)0.0110 (5)0.0036 (5)
C70.0272 (7)0.0257 (6)0.0267 (7)−0.0022 (5)0.0104 (5)0.0034 (5)
C80.0217 (6)0.0273 (6)0.0236 (6)−0.0029 (5)0.0082 (5)−0.0019 (5)
C90.0285 (7)0.0333 (7)0.0276 (7)−0.0027 (5)0.0121 (6)0.0018 (6)
C100.0290 (7)0.0414 (8)0.0280 (7)−0.0057 (6)0.0142 (6)−0.0028 (6)
C110.0261 (7)0.0383 (8)0.0328 (8)−0.0014 (6)0.0140 (6)−0.0063 (6)
C120.0252 (6)0.0312 (7)0.0303 (7)0.0006 (5)0.0108 (5)−0.0026 (6)
C130.0203 (6)0.0269 (6)0.0222 (6)−0.0030 (5)0.0070 (5)−0.0035 (5)
C140.0227 (6)0.0260 (6)0.0228 (6)0.0014 (5)0.0042 (5)−0.0005 (5)
C150.0281 (6)0.0265 (6)0.0213 (6)−0.0001 (5)0.0061 (5)0.0012 (5)
C160.0394 (8)0.0308 (7)0.0278 (7)0.0051 (6)0.0083 (6)0.0039 (6)
C170.0529 (10)0.0299 (7)0.0326 (8)0.0018 (7)0.0113 (7)0.0095 (6)
C180.0451 (9)0.0355 (8)0.0298 (8)−0.0089 (7)0.0115 (7)0.0069 (6)
C190.0314 (7)0.0354 (7)0.0281 (7)−0.0051 (6)0.0099 (6)0.0052 (6)
C200.0264 (6)0.0253 (6)0.0212 (6)−0.0042 (5)0.0059 (5)0.0011 (5)
C210.0325 (7)0.0372 (8)0.0300 (7)0.0013 (6)0.0158 (6)0.0001 (6)
C220.0444 (9)0.0448 (9)0.0294 (8)0.0056 (7)0.0175 (7)−0.0039 (6)
C230.0449 (9)0.0350 (8)0.0270 (7)0.0012 (7)0.0077 (6)−0.0062 (6)
C240.0339 (8)0.0372 (8)0.0311 (7)−0.0070 (6)0.0084 (6)−0.0053 (6)
C250.0283 (7)0.0342 (7)0.0275 (7)−0.0040 (6)0.0109 (6)−0.0039 (6)
C260.0300 (7)0.0273 (6)0.0284 (7)−0.0033 (6)0.0059 (6)0.0014 (5)
C270.0413 (9)0.0313 (7)0.0353 (8)−0.0063 (6)0.0086 (7)−0.0048 (6)
C280.0306 (8)0.0468 (8)0.0287 (7)−0.0050 (7)0.0045 (6)−0.0070 (6)
C290.0260 (7)0.0476 (8)0.0278 (7)0.0061 (6)0.0037 (6)0.0016 (6)
C300.0271 (7)0.0321 (7)0.0302 (7)0.0055 (6)0.0069 (5)0.0022 (5)
Cl10.0386 (2)0.03535 (19)0.02889 (18)−0.00695 (15)0.01530 (15)−0.00310 (14)
O30.0448 (7)0.0543 (8)0.0685 (10)−0.0165 (6)0.0010 (7)−0.0043 (7)
O40.0409 (7)0.0565 (8)0.0734 (10)0.0025 (6)0.0215 (7)0.0056 (7)
O50.1066 (14)0.0717 (11)0.0531 (9)−0.0091 (9)0.0409 (10)0.0203 (8)
O60.0824 (11)0.0645 (9)0.0529 (9)−0.0057 (8)0.0366 (8)−0.0224 (7)

Geometric parameters (Å, °)

Co1—O21.8806 (10)C12—C131.394 (2)
Co1—O11.8833 (10)C12—H120.9500
Co1—N11.8947 (12)C14—C151.433 (2)
Co1—N21.8953 (12)C14—H140.9500
Co1—N31.9577 (12)C15—C161.418 (2)
Co1—N41.9789 (12)C15—C201.422 (2)
O1—C11.3089 (17)C16—C171.373 (2)
O2—C201.3078 (17)C16—H160.9500
N1—C71.2985 (18)C17—C181.397 (3)
N1—C81.4222 (18)C17—H170.9500
N2—C141.3004 (18)C18—C191.375 (2)
N2—C131.4238 (18)C18—H180.9500
N3—C251.3448 (19)C19—C201.418 (2)
N3—C211.3484 (19)C19—H190.9500
N4—C261.3420 (19)C21—C221.380 (2)
N4—C301.3421 (19)C21—H210.9500
C1—C21.413 (2)C22—C231.376 (3)
C1—C61.420 (2)C22—H220.9500
C2—C31.371 (2)C23—C241.378 (2)
C2—H20.9500C23—H230.9500
C3—C41.391 (3)C24—C251.378 (2)
C3—H30.9500C24—H240.9500
C4—C51.377 (2)C25—H250.9500
C4—H40.9500C26—C271.382 (2)
C5—C61.417 (2)C26—H260.9500
C5—H50.9500C27—C281.383 (2)
C6—C71.433 (2)C27—H270.9500
C7—H70.9500C28—C291.378 (3)
C8—C91.393 (2)C28—H280.9500
C8—C131.403 (2)C29—C301.384 (2)
C9—C101.382 (2)C29—H290.9500
C9—H90.9500C30—H300.9500
C10—C111.394 (2)Cl1—O51.4142 (15)
C10—H100.9500Cl1—O61.4190 (14)
C11—C121.382 (2)Cl1—O31.4296 (14)
C11—H110.9500Cl1—O41.4479 (15)
O2—Co1—O184.41 (4)C11—C12—H12120.4
O2—Co1—N1178.39 (5)C13—C12—H12120.4
O1—Co1—N194.06 (5)C12—C13—C8119.92 (13)
O2—Co1—N295.85 (5)C12—C13—N2125.63 (13)
O1—Co1—N2179.15 (5)C8—C13—N2114.44 (12)
N1—Co1—N285.69 (5)N2—C14—C15124.82 (13)
O2—Co1—N389.96 (5)N2—C14—H14117.6
O1—Co1—N389.93 (5)C15—C14—H14117.6
N1—Co1—N389.55 (5)C16—C15—C20119.23 (14)
N2—Co1—N390.89 (5)C16—C15—C14117.44 (14)
O2—Co1—N490.50 (5)C20—C15—C14123.19 (13)
O1—Co1—N489.22 (5)C17—C16—C15121.51 (16)
N1—Co1—N489.96 (5)C17—C16—H16119.2
N2—Co1—N489.97 (5)C15—C16—H16119.2
N3—Co1—N4178.98 (5)C16—C17—C18119.21 (15)
C1—O1—Co1123.99 (9)C16—C17—H17120.4
C20—O2—Co1125.60 (9)C18—C17—H17120.4
C7—N1—C8122.95 (12)C19—C18—C17120.97 (15)
C7—N1—Co1124.59 (10)C19—C18—H18119.5
C8—N1—Co1111.89 (9)C17—C18—H18119.5
C14—N2—C13122.71 (12)C18—C19—C20121.28 (16)
C14—N2—Co1125.23 (10)C18—C19—H19119.4
C13—N2—Co1112.04 (9)C20—C19—H19119.4
C25—N3—C21118.18 (13)O2—C20—C19117.45 (13)
C25—N3—Co1122.34 (10)O2—C20—C15124.79 (13)
C21—N3—Co1119.26 (10)C19—C20—C15117.74 (13)
C26—N4—C30118.12 (13)N3—C21—C22121.62 (15)
C26—N4—Co1121.08 (10)N3—C21—H21119.2
C30—N4—Co1120.76 (10)C22—C21—H21119.2
O1—C1—C2117.78 (13)C23—C22—C21119.79 (16)
O1—C1—C6124.30 (13)C23—C22—H22120.1
C2—C1—C6117.91 (13)C21—C22—H22120.1
C3—C2—C1121.39 (15)C22—C23—C24118.79 (15)
C3—C2—H2119.3C22—C23—H23120.6
C1—C2—H2119.3C24—C23—H23120.6
C2—C3—C4120.97 (16)C25—C24—C23118.93 (16)
C2—C3—H3119.5C25—C24—H24120.5
C4—C3—H3119.5C23—C24—H24120.5
C5—C4—C3119.30 (15)N3—C25—C24122.65 (15)
C5—C4—H4120.3N3—C25—H25118.7
C3—C4—H4120.3C24—C25—H25118.7
C4—C5—C6121.29 (15)N4—C26—C27122.41 (14)
C4—C5—H5119.4N4—C26—H26118.8
C6—C5—H5119.4C27—C26—H26118.8
C5—C6—C1119.08 (14)C26—C27—C28119.22 (16)
C5—C6—C7118.49 (14)C26—C27—H27120.4
C1—C6—C7122.43 (13)C28—C27—H27120.4
N1—C7—C6124.61 (13)C29—C28—C27118.61 (15)
N1—C7—H7117.7C29—C28—H28120.7
C6—C7—H7117.7C27—C28—H28120.7
C9—C8—C13120.43 (13)C28—C29—C30119.17 (15)
C9—C8—N1125.36 (13)C28—C29—H29120.4
C13—C8—N1114.21 (12)C30—C29—H29120.4
C10—C9—C8119.06 (14)N4—C30—C29122.47 (15)
C10—C9—H9120.5N4—C30—H30118.8
C8—C9—H9120.5C29—C30—H30118.8
C9—C10—C11120.52 (14)O5—Cl1—O6109.89 (11)
C9—C10—H10119.7O5—Cl1—O3111.16 (11)
C11—C10—H10119.7O6—Cl1—O3110.03 (11)
C12—C11—C10120.86 (14)O5—Cl1—O4109.71 (11)
C12—C11—H11119.6O6—Cl1—O4107.85 (10)
C10—C11—H11119.6O3—Cl1—O4108.12 (9)
C11—C12—C13119.11 (14)
O2—Co1—O1—C1153.07 (12)C5—C6—C7—N1172.43 (15)
N1—Co1—O1—C1−26.44 (12)C1—C6—C7—N1−7.1 (2)
N3—Co1—O1—C163.11 (12)C7—N1—C8—C9−20.5 (2)
N4—Co1—O1—C1−116.34 (12)Co1—N1—C8—C9167.85 (12)
O1—Co1—O2—C20−173.59 (12)C7—N1—C8—C13159.31 (13)
N2—Co1—O2—C207.22 (12)Co1—N1—C8—C13−12.36 (14)
N3—Co1—O2—C20−83.66 (12)C13—C8—C9—C10−1.6 (2)
N4—Co1—O2—C2097.24 (12)N1—C8—C9—C10178.21 (13)
O1—Co1—N1—C721.49 (12)C8—C9—C10—C11−1.4 (2)
N2—Co1—N1—C7−159.33 (12)C9—C10—C11—C122.5 (2)
N3—Co1—N1—C7−68.41 (12)C10—C11—C12—C13−0.6 (2)
N4—Co1—N1—C7110.70 (12)C11—C12—C13—C8−2.4 (2)
O1—Co1—N1—C8−167.01 (9)C11—C12—C13—N2176.48 (13)
N2—Co1—N1—C812.17 (9)C9—C8—C13—C123.5 (2)
N3—Co1—N1—C8103.10 (9)N1—C8—C13—C12−176.31 (12)
N4—Co1—N1—C8−77.80 (9)C9—C8—C13—N2−175.50 (12)
O2—Co1—N2—C14−7.55 (12)N1—C8—C13—N24.70 (17)
N1—Co1—N2—C14171.98 (12)C14—N2—C13—C124.6 (2)
N3—Co1—N2—C1482.50 (12)Co1—N2—C13—C12−173.76 (11)
N4—Co1—N2—C14−98.05 (12)C14—N2—C13—C8−176.42 (12)
O2—Co1—N2—C13170.81 (9)Co1—N2—C13—C85.17 (14)
N1—Co1—N2—C13−9.66 (9)C13—N2—C14—C15−173.08 (13)
N3—Co1—N2—C13−99.15 (9)Co1—N2—C14—C155.1 (2)
N4—Co1—N2—C1380.30 (9)N2—C14—C15—C16175.93 (13)
O2—Co1—N3—C25142.20 (12)N2—C14—C15—C200.2 (2)
O1—Co1—N3—C25−133.39 (12)C20—C15—C16—C17−0.6 (2)
N1—Co1—N3—C25−39.34 (12)C14—C15—C16—C17−176.47 (15)
N2—Co1—N3—C2546.35 (12)C15—C16—C17—C18−0.7 (3)
O2—Co1—N3—C21−43.24 (12)C16—C17—C18—C190.2 (3)
O1—Co1—N3—C2141.17 (12)C17—C18—C19—C201.6 (2)
N1—Co1—N3—C21135.23 (12)Co1—O2—C20—C19177.06 (10)
N2—Co1—N3—C21−139.09 (12)Co1—O2—C20—C15−4.4 (2)
O2—Co1—N4—C26−51.73 (12)C18—C19—C20—O2175.84 (14)
O1—Co1—N4—C26−136.13 (12)C18—C19—C20—C15−2.8 (2)
N1—Co1—N4—C26129.81 (12)C16—C15—C20—O2−176.25 (14)
N2—Co1—N4—C2644.12 (12)C14—C15—C20—O2−0.6 (2)
O2—Co1—N4—C30125.70 (12)C16—C15—C20—C192.3 (2)
O1—Co1—N4—C3041.29 (12)C14—C15—C20—C19177.89 (13)
N1—Co1—N4—C30−52.76 (12)C25—N3—C21—C221.5 (2)
N2—Co1—N4—C30−138.45 (12)Co1—N3—C21—C22−173.33 (12)
Co1—O1—C1—C2−161.34 (12)N3—C21—C22—C230.3 (3)
Co1—O1—C1—C619.2 (2)C21—C22—C23—C24−1.5 (3)
O1—C1—C2—C3177.90 (17)C22—C23—C24—C250.8 (3)
C6—C1—C2—C3−2.6 (3)C21—N3—C25—C24−2.1 (2)
C1—C2—C3—C40.7 (3)Co1—N3—C25—C24172.49 (12)
C2—C3—C4—C51.2 (3)C23—C24—C25—N31.0 (3)
C3—C4—C5—C6−1.2 (3)C30—N4—C26—C27−0.1 (2)
C4—C5—C6—C1−0.7 (3)Co1—N4—C26—C27177.38 (13)
C4—C5—C6—C7179.73 (17)N4—C26—C27—C28−0.5 (3)
O1—C1—C6—C5−177.95 (15)C26—C27—C28—C290.9 (3)
C2—C1—C6—C52.6 (2)C27—C28—C29—C30−0.8 (3)
O1—C1—C6—C71.6 (2)C26—N4—C30—C290.2 (2)
C2—C1—C6—C7−177.91 (15)Co1—N4—C30—C29−177.29 (12)
C8—N1—C7—C6−179.53 (13)C28—C29—C30—N40.3 (3)
Co1—N1—C7—C6−8.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.403.293 (3)157
C11—H11···O6ii0.952.493.261 (3)138
C12—H12···O30.952.593.501 (2)161
C14—H14···O3iii0.952.513.002 (2)112
C29—H29···O1iv0.952.473.111 (2)124

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2470).

References

  • Amirnasr, M., Schenk, K. J., Gorji, A. & Vafazadeh, R. (2001). Polyhedron, 20, 695–702.
  • Bruker (2008). APEX2, SAINTandSADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Khandar, A. A., Shaabani, B., Belaj, F. & Bakhtiari, A. (2007). Inorg. Chim. Acta, 360, 3255–3264.
  • Kumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A. & Akbarsha, M. A. (2009). J. Inorg. Biochem 103, 117–127. [PubMed]
  • Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. D., Novaković, S. B., Kaluderović, G. N. & Kozlowski, H. (2006). J. Inorg. Biochem.100, 1568–1574. [PubMed]
  • Mishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem 43, 2189–2196. [PubMed]
  • Nishinaga, A. & Tomita, H. (1980). J. Mol. Catal.7, 179–199.
  • Park, S., Mathur, V. K. & Planalp, R. P. (1998). Polyhedron, 17, 325–330.
  • Schenk, K. J., Meghdadi, S., Amirnasr, M., Habibi, M. H., Amiri, A., Salehi, M. & Kashi, A. (2007). Polyhedron, 26, 5448–5457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Speiser, B. & Stahl, H. (1995). Angew. Chem. Int. Ed.34, 1086–1089.
  • Yamada, S. (1999). Coord. Chem. Rev.190–192, 537–555.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography