PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1852–o1853.
Published online 2009 July 15. doi:  10.1107/S1600536809026567
PMCID: PMC2977384

(Z)-1-(2,5-Dichloro-3-thien­yl)ethanone semicarbazone

Abstract

The title mol­ecule, C7H7Cl2N3OS, is approximately planar [maximum deviation = 0.062 (1) Å]. Short inter­molecular distances between the centroids of the five-membered rings [3.5340 (8) Å] indicate the existence of π–π inter­actions. An inter­esting feature of the crystal structure is the presence of short intra­molecular Cl(...)N inter­actions [3.0015 (11) Å]. Mol­ecules are linked via pairs of inter­molecular N—H(...)O hydrogen bonds, generating R 2 2(8) ring motifs. Furthermore, N—H(...)O hydrogen bonds form R 2 1(7) ring motifs with C—H(...)O contacts, further consolidating the crystal structure. In the crystal, mol­ecules are linked by these inter­molecular inter­actions, forming chains along [001].

Related literature

For the synthetic utility and applications of semicarbazone derivatives, see: Warren et al. (1977 [triangle]); Chandra & Gupta (2005 [triangle]); Jain et al. (2002 [triangle]); Pilgram (1978 [triangle]); Yogeeswari et al. (2004 [triangle]). For related structures, see: Fun et al. (2009a [triangle],b [triangle]). For the preparation, see: Furniss et al. (1978 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1852-scheme1.jpg

Experimental

Crystal data

  • C7H7Cl2N3OS
  • M r = 252.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1852-efi1.jpg
  • a = 13.0796 (2) Å
  • b = 10.4316 (2) Å
  • c = 14.4352 (2) Å
  • β = 94.599 (1)°
  • V = 1963.21 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 100 K
  • 0.49 × 0.22 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.683, T max = 0.934
  • 16375 measured reflections
  • 3742 independent reflections
  • 3060 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.100
  • S = 1.13
  • 3742 reflections
  • 140 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Selected interatomic distance (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026567/tk2498sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026567/tk2498Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

Semicarbazones find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). Futher, 4-sulphamoylphenyl semicarbazones were found to possess anti-convulsant activity (Yogeeswari et al., 2004). Herein, we report the crystal structure of the title semicarbazone (I).

The bond lengths and angles in (I), Fig. 1, are comparable to those observed in two closely related structures (Fun et al., 2009a, b). The molecule is approximately planar, with an r.m.s. deviation of 0.062 (1) Å for atom O1. The short intramolecular distances between the centroids of five-membered rings [3.5340 (8) Å] prove existence of π–π interactions (Table 1). The interesting feature of the crystal structure is the short intermolecular Cl···N interactions [3.0015 (11) Å]".

The molecules are linked via pairs of intermolecular N1—H1N1···O1 and N2—H1N2···O1 (Table 2) hydrogen bonds to generate R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2). Furthermore, N2—H1N2···O1 hydrogen bonds form R21(7) ring motifs with C7—H7A···O1 contacts to further consolidate the crystal structure. The molecules are linked by these intermolecular interactions to form 1-D chains along the [0 0 1] direction.

Experimental

Semicarbazide hydrochloride (1.84 g, 16.5 mmol) and freshly recrystallized sodium acetate (1.64 g, 20.0 mmol) was dissolved in water (15 ml) according to a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 2,5-dichloro-3-acetylthiophene (3.0 g, 15.4 mmol) in ethanol (15 ml) was added and stirred well for 6 h. The separated semicarbazone was filtered, washed with chilled water and recrystallized from an ethanol/dimethylformamide mixture. Yield: 3.19 g, 82.22%. M.p. 491–493 K.

Refinement

N-bound H atoms were located in a difference Fourier map and were allowed to refine freely, see Table 2 for distances. All the other H atoms were placed in calculated positions, with C–H = 0.93 or 0.96 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing in (I), viewed along the b axis. The dashed lines indicate hydrogen bonds and C-H···O contacts.

Crystal data

C7H7Cl2N3OSF(000) = 1024
Mr = 252.12Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6313 reflections
a = 13.0796 (2) Åθ = 2.5–33.2°
b = 10.4316 (2) ŵ = 0.84 mm1
c = 14.4352 (2) ÅT = 100 K
β = 94.599 (1)°Plate, colourless
V = 1963.21 (6) Å30.49 × 0.22 × 0.08 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3742 independent reflections
Radiation source: fine-focus sealed tube3060 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 33.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −20→19
Tmin = 0.683, Tmax = 0.934k = −16→15
16375 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0516P)2 + 0.6332P] where P = (Fo2 + 2Fc2)/3
3742 reflections(Δ/σ)max = 0.002
140 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.17736 (3)0.23231 (4)0.62567 (3)0.02794 (10)
Cl20.88955 (3)0.12728 (4)0.31571 (2)0.02421 (10)
S11.06944 (2)0.19596 (3)0.43833 (3)0.01940 (9)
O10.48318 (7)−0.00827 (9)0.37962 (6)0.01622 (18)
N10.62401 (10)0.02718 (15)0.30045 (8)0.0247 (3)
N20.63508 (8)0.03704 (11)0.46052 (7)0.0150 (2)
N30.73470 (8)0.07286 (10)0.45321 (7)0.0146 (2)
C10.57608 (9)0.01731 (12)0.37865 (8)0.0147 (2)
C20.79348 (9)0.09889 (12)0.52643 (9)0.0141 (2)
C30.89959 (10)0.13686 (12)0.51073 (9)0.0150 (2)
C40.97547 (10)0.16495 (13)0.58619 (9)0.0183 (2)
H4A0.96210.16170.64850.022*
C51.06803 (10)0.19643 (13)0.55714 (10)0.0194 (3)
C60.94260 (10)0.15031 (13)0.42725 (9)0.0167 (2)
C70.76299 (11)0.09363 (16)0.62397 (9)0.0232 (3)
H7A0.69130.07340.62340.035*
H7B0.77570.17530.65330.035*
H7C0.80240.02880.65790.035*
H1N10.5931 (16)0.0142 (19)0.2466 (16)0.036 (5)*
H2N10.6797 (17)0.0442 (19)0.3063 (14)0.030 (5)*
H1N20.6027 (14)0.0324 (17)0.5102 (13)0.022 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01347 (16)0.0327 (2)0.0365 (2)−0.00378 (13)−0.00478 (14)−0.00720 (15)
Cl20.01543 (15)0.0411 (2)0.01659 (15)−0.00354 (13)0.00432 (11)0.00003 (12)
S10.01115 (15)0.02034 (16)0.02707 (17)−0.00210 (11)0.00391 (12)0.00104 (12)
O10.0101 (4)0.0251 (5)0.0135 (4)−0.0015 (4)0.0005 (3)0.0007 (3)
N10.0116 (5)0.0502 (8)0.0124 (5)−0.0061 (5)0.0008 (4)−0.0013 (5)
N20.0102 (4)0.0224 (5)0.0122 (4)−0.0034 (4)0.0008 (4)−0.0002 (4)
N30.0095 (4)0.0199 (5)0.0148 (4)−0.0027 (4)0.0018 (4)−0.0003 (4)
C10.0121 (5)0.0185 (6)0.0136 (5)−0.0006 (4)0.0020 (4)−0.0001 (4)
C20.0113 (5)0.0156 (5)0.0152 (5)−0.0010 (4)0.0010 (4)−0.0004 (4)
C30.0113 (5)0.0154 (5)0.0182 (5)−0.0006 (4)0.0006 (4)−0.0008 (4)
C40.0137 (6)0.0199 (6)0.0208 (6)−0.0011 (5)−0.0010 (5)−0.0029 (5)
C50.0121 (5)0.0195 (6)0.0261 (6)−0.0011 (5)−0.0020 (5)−0.0041 (5)
C60.0117 (5)0.0192 (6)0.0192 (6)−0.0010 (5)0.0016 (4)0.0000 (4)
C70.0164 (6)0.0390 (8)0.0140 (5)−0.0029 (6)0.0005 (5)−0.0002 (5)

Geometric parameters (Å, °)

Cl1—C51.7137 (14)N3—C21.2851 (16)
Cl2—C61.7182 (13)C2—C31.4782 (18)
S1—C51.7167 (15)C2—C71.4949 (18)
S1—C61.7211 (13)C3—C61.3773 (19)
O1—C11.2452 (15)C3—C41.4436 (18)
N1—C11.3384 (17)C4—C51.3530 (19)
N1—H1N10.86 (2)C4—H4A0.9300
N1—H2N10.75 (2)C7—H7A0.9600
N2—N31.3677 (15)C7—H7B0.9600
N2—C11.3741 (16)C7—H7C0.9600
N2—H1N20.863 (19)
Cg1···Cg1i3.7188 (6)Cl2···N33.0015 (11)
C5—S1—C690.35 (6)C4—C3—C2122.41 (12)
C1—N1—H1N1122.3 (14)C5—C4—C3113.17 (13)
C1—N1—H2N1116.2 (16)C5—C4—H4A123.4
H1N1—N1—H2N1122 (2)C3—C4—H4A123.4
N3—N2—C1116.57 (10)C4—C5—Cl1126.87 (12)
N3—N2—H1N2127.8 (12)C4—C5—S1112.98 (10)
C1—N2—H1N2115.3 (12)Cl1—C5—S1120.14 (8)
C2—N3—N2120.34 (11)C3—C6—Cl2130.02 (10)
O1—C1—N1123.33 (12)C3—C6—S1113.90 (10)
O1—C1—N2120.24 (11)Cl2—C6—S1116.08 (8)
N1—C1—N2116.44 (11)C2—C7—H7A109.5
N3—C2—C3115.96 (11)C2—C7—H7B109.5
N3—C2—C7125.43 (11)H7A—C7—H7B109.5
C3—C2—C7118.61 (11)C2—C7—H7C109.5
C6—C3—C4109.59 (11)H7A—C7—H7C109.5
C6—C3—C2128.00 (12)H7B—C7—H7C109.5
C1—N2—N3—C2176.77 (12)C3—C4—C5—Cl1−178.46 (10)
N3—N2—C1—O1−175.87 (11)C3—C4—C5—S10.65 (16)
N3—N2—C1—N14.15 (18)C6—S1—C5—C4−0.70 (11)
N2—N3—C2—C3−179.86 (11)C6—S1—C5—Cl1178.47 (9)
N2—N3—C2—C70.1 (2)C4—C3—C6—Cl2179.02 (11)
N3—C2—C3—C61.5 (2)C2—C3—C6—Cl2−0.5 (2)
C7—C2—C3—C6−178.55 (13)C4—C3—C6—S1−0.35 (15)
N3—C2—C3—C4−177.95 (12)C2—C3—C6—S1−179.82 (10)
C7—C2—C3—C42.03 (19)C5—S1—C6—C30.60 (11)
C6—C3—C4—C5−0.19 (17)C5—S1—C6—Cl2−178.86 (9)
C2—C3—C4—C5179.32 (12)

Symmetry codes: (i) x+5/2, y+1/2, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1ii0.86 (2)2.02 (2)2.8766 (15)177.3 (19)
N2—H1N2···O1iii0.863 (19)2.035 (19)2.8949 (14)174.2 (17)
C7—H7A···O1iii0.962.383.3370 (17)176

Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2498).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Quah, C. K., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1634–o1635. [PMC free article] [PubMed]
  • Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620. [PMC free article] [PubMed]
  • Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel’s Textbook of Practical Organic Chemistry, 4th ed. p. 1112. London: ELBS.
  • Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym.51, 101–110.
  • Pilgram, K. H. G. (1978). US Patent No. 4 108 399.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem.20, 1520–1521. [PubMed]
  • Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography