PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1817.
Published online 2009 July 11. doi:  10.1107/S1600536809026026
PMCID: PMC2977376

1,4-Bis(4-pyridylmeth­yl)piperazin-1-ium perchlorate fumaric acid hemisolvate

Abstract

In the title salt, C16H21N4 +·ClO4 ·0.5C4H4O4, fumaric acid mol­ecules, situated across crystallographic inversion centres, are O—H(...)N hydrogen bonded to two protonated 1,4-bis­(4-pyridylmeth­yl)piperazine cations, forming trimolecular units. These construct one-dimensional supra­molecular ribbons by N—H(...)N hydrogen bonding, and further aggregate via π–π inter­actions [shortest C(...)C contact = 3.640 (1) Å] and perchlorate-mediated C—H(...)O inter­actions.

Related literature

For the preparation of bis­(4-pyridylmeth­yl)piperazine, see: Pocic et al. (2005 [triangle]). For a cadmium fumarate coordination polymer containing bis­(4-pyridylmeth­yl)piperazine, see: Martin et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1817-scheme1.jpg

Experimental

Crystal data

  • C16H21N4 +·ClO4 ·0.5C4H4O4
  • M r = 426.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1817-efi1.jpg
  • a = 7.7287 (9) Å
  • b = 9.6415 (11) Å
  • c = 14.3440 (17) Å
  • α = 88.691 (2)°
  • β = 83.785 (2)°
  • γ = 66.749 (2)°
  • V = 976.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 173 K
  • 0.41 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.908, T max = 0.969
  • 14571 measured reflections
  • 3593 independent reflections
  • 3178 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.05
  • 3593 reflections
  • 268 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Crystal Maker (Palmer, 2005 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026026/tk2492sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026026/tk2492Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

The title compound (I) was prepared during an attempt to prepare a divalent Cd coordination polymer containing both fumarate and N,N'-di(4-pyridyl- methyl)piperazine (bpmp) ligands. The coordination polymer [Cd(fumarate)(bpmp)(H2O)2]n could only be prepared by using maleic acid, which underwent in situ cis-trans isomerization (Martin et al., 2009).

The asymmetric unit of the title compound (Fig. 1) consists of one bpmp molecule protonated at one of its piperazinyl-N atoms, one perchlorate anion, and one-half of a fumaric acid molecule situated across a crystallographic inversion centre. Hydrogen-bonding between the carboxylic acid functional groups of the fumaric acid molecules and pyridyl-N atoms within the Hbpmp+ moieties produces dicationic [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregations (Fig. 2 & Table 1).

The [(Hbpmp)2(H2fumarate)]2+ units construct one-dimensional ribbon motifs (Fig. 3) by means of N—H···N hydrogen-bonding between the protonated piperazinyl-N atoms and pyridyl-N atoms. Individual ribbons aggregate into a 2-D supramolecular layer through C—H···O interactions mediated by the perchlorate anions (Table 1). Neighbouring layers stack into the 3-D crystal structure (Fig. 4) by π-π interactions between pyridyl rings. (CgCg(-x + 1,-y + 2,-z) with distance = 3.640 (1) Å).

Experimental

Cadmium perchlorate hexahydrate and fumaric acid were obtained commercially. N,N'-Di(4-pyridylmethyl)piperazine (bpmp) was prepared via a published procedure (Pocic et al., 2005). Cadmium perchlorate hexahydrate (0.0175 g, 0.0562 mmol) and fumaric acid (0.0065 g, 0.056 mmol) were placed in water (1.5 ml) in a glass vial along with 1.0 M NaOH (0.2 ml). This solution was heated to 373 K to dissolve the fumaric acid. An aliquot (0.75 ml) of a 1:1 water:ethanol solution was carefully layered on top. Then 0.075 M ethanolic solution (1.5 ml) of bpmp (0.11 mmol) was carefully layered on top. Colourless blocks of (I) were deposited after standing for one week at 293 K.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å for sp2 hybridized C atoms and C—H = 0.99 Å for sp3 hybridized C atoms, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O and the H atoms bound to the piperazinyl-N were found via Fourier difference map, and refined with Uiso = 1.2 times the Ueq(O, N).

Figures

Fig. 1.
Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms positions are marked as gray sticks. A complete fumaric acid moiety is shown. Symmetry code: i -x + 1, -y + 1, -z + 1.
Fig. 2.
A [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregration in (I). Hydrogen bonding is shown as dashed lines.
Fig. 3.
A hydrogen-bonded ribbon motif consisting of [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregration. Hydrogen bonding is shown as dashed lines.
Fig. 4.
Packing diagram for (I).

Crystal data

C16H21N4+·ClO4·0.5C4H4O4Z = 2
Mr = 426.85F(000) = 448
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7287 (9) ÅCell parameters from 14571 reflections
b = 9.6415 (11) Åθ = 2.3–25.4°
c = 14.3440 (17) ŵ = 0.24 mm1
α = 88.691 (2)°T = 173 K
β = 83.785 (2)°Block, colourless
γ = 66.749 (2)°0.41 × 0.21 × 0.13 mm
V = 976.0 (2) Å3

Data collection

Bruker APEXII diffractometer3593 independent reflections
Radiation source: fine-focus sealed tube3178 reflections with I > 2σ(I)
graphiteRint = 0.031
ω–ψ scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.908, Tmax = 0.969k = −11→11
14571 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5777P] where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Supramolecular interactions were calculated using PLATON (Spek, 2009).
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.14315 (19)0.60021 (15)0.29972 (9)0.0221 (3)
N30.12885 (19)0.80520 (15)0.14915 (9)0.0195 (3)
H3N0.005 (3)0.828 (2)0.1385 (13)0.023*
C70.1416 (2)0.55727 (19)0.20264 (12)0.0251 (4)
H7A0.00940.58410.18920.030*
H7B0.21080.44670.19360.030*
N10.3877 (2)0.04563 (16)0.39116 (10)0.0283 (3)
C20.0899 (3)0.2558 (2)0.39796 (12)0.0284 (4)
H2−0.04420.29290.41020.034*
C100.1253 (2)0.84885 (18)0.24896 (11)0.0226 (3)
H10A0.05150.95880.25860.027*
H10B0.25610.82540.26370.027*
C80.2342 (2)0.63786 (18)0.13586 (12)0.0241 (4)
H8A0.36760.60880.14800.029*
H8B0.23330.60810.07040.029*
C30.1772 (2)0.35304 (18)0.36903 (11)0.0234 (4)
N40.76043 (19)0.86552 (17)0.10634 (10)0.0261 (3)
C110.1980 (2)0.89600 (18)0.07906 (12)0.0224 (3)
H11A0.19510.86150.01500.027*
H11B0.10991.00340.08620.027*
C90.0361 (2)0.76287 (18)0.31339 (12)0.0238 (4)
H9A0.03390.79170.37940.029*
H9B−0.09620.78960.30020.029*
C40.3730 (2)0.29139 (19)0.34948 (11)0.0244 (4)
H40.43820.35340.32800.029*
C150.4238 (2)0.99776 (19)0.13418 (12)0.0249 (4)
H150.31881.08390.16000.030*
C160.6071 (2)0.9846 (2)0.14065 (12)0.0268 (4)
H160.62481.06390.17090.032*
C50.4719 (3)0.13881 (19)0.36167 (12)0.0273 (4)
H50.60600.09810.34850.033*
C140.3955 (2)0.88367 (18)0.08945 (11)0.0202 (3)
C60.0591 (2)0.51999 (19)0.36533 (13)0.0282 (4)
H6A−0.06680.53460.34720.034*
H6B0.03980.56520.42890.034*
C10.1992 (3)0.1050 (2)0.40882 (12)0.0300 (4)
H10.13750.04030.42980.036*
C120.7322 (2)0.7561 (2)0.06285 (12)0.0261 (4)
H120.83970.67060.03830.031*
O10.55138 (19)0.75287 (15)0.40307 (10)0.0365 (3)
H1A0.496 (3)0.857 (3)0.3980 (15)0.044*
C170.4406 (2)0.70070 (19)0.45469 (12)0.0261 (4)
Cl10.78159 (6)0.33434 (5)0.16421 (3)0.02773 (13)
O50.7247 (2)0.45702 (18)0.22864 (11)0.0539 (4)
O60.9359 (3)0.3305 (3)0.10017 (15)0.0877 (7)
C180.5308 (2)0.53460 (19)0.46587 (13)0.0281 (4)
H180.63560.47640.42280.034*
O20.28278 (17)0.77780 (14)0.49090 (10)0.0342 (3)
O30.8334 (3)0.19613 (18)0.21367 (14)0.0673 (5)
O40.6259 (2)0.34683 (18)0.11388 (11)0.0555 (4)
C130.5544 (2)0.76136 (19)0.05197 (12)0.0243 (4)
H130.54080.68230.01920.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0246 (7)0.0196 (7)0.0218 (7)−0.0091 (6)−0.0001 (6)0.0040 (5)
N30.0152 (6)0.0221 (7)0.0233 (7)−0.0091 (6)−0.0048 (5)0.0053 (5)
C70.0299 (9)0.0217 (8)0.0265 (9)−0.0128 (7)−0.0051 (7)0.0032 (7)
N10.0347 (8)0.0221 (7)0.0273 (8)−0.0110 (6)−0.0015 (6)0.0027 (6)
C20.0277 (9)0.0285 (9)0.0300 (9)−0.0131 (7)0.0002 (7)0.0046 (7)
C100.0253 (8)0.0197 (8)0.0240 (8)−0.0097 (7)−0.0050 (7)0.0023 (6)
C80.0258 (9)0.0217 (8)0.0236 (8)−0.0083 (7)−0.0022 (7)0.0011 (6)
C30.0288 (9)0.0235 (8)0.0187 (8)−0.0118 (7)−0.0010 (7)0.0033 (6)
N40.0213 (7)0.0348 (8)0.0265 (7)−0.0152 (6)−0.0046 (6)0.0054 (6)
C110.0182 (8)0.0253 (8)0.0252 (8)−0.0097 (7)−0.0055 (6)0.0093 (7)
C90.0233 (8)0.0220 (8)0.0242 (8)−0.0077 (7)0.0001 (7)0.0022 (7)
C40.0286 (9)0.0251 (9)0.0229 (8)−0.0147 (7)−0.0011 (7)0.0020 (7)
C150.0222 (8)0.0239 (8)0.0288 (9)−0.0102 (7)0.0002 (7)0.0022 (7)
C160.0285 (9)0.0305 (9)0.0277 (9)−0.0185 (8)−0.0032 (7)0.0021 (7)
C50.0270 (9)0.0264 (9)0.0277 (9)−0.0101 (7)−0.0019 (7)0.0014 (7)
C140.0184 (8)0.0242 (8)0.0201 (8)−0.0105 (7)−0.0044 (6)0.0084 (6)
C60.0271 (9)0.0245 (9)0.0298 (9)−0.0091 (7)0.0051 (7)0.0054 (7)
C10.0371 (10)0.0262 (9)0.0317 (9)−0.0183 (8)−0.0017 (8)0.0048 (7)
C120.0195 (8)0.0299 (9)0.0273 (9)−0.0088 (7)−0.0007 (7)0.0019 (7)
O10.0351 (7)0.0220 (7)0.0471 (8)−0.0093 (6)0.0085 (6)0.0065 (6)
C170.0285 (9)0.0253 (9)0.0269 (9)−0.0127 (7)−0.0054 (7)0.0042 (7)
Cl10.0276 (2)0.0264 (2)0.0286 (2)−0.01057 (17)0.00035 (17)−0.00359 (17)
O50.0618 (10)0.0491 (9)0.0518 (9)−0.0238 (8)0.0021 (8)−0.0249 (7)
O60.0777 (14)0.1239 (18)0.0735 (13)−0.0640 (14)0.0431 (11)−0.0279 (12)
C180.0270 (9)0.0237 (9)0.0335 (9)−0.0101 (7)−0.0030 (7)0.0012 (7)
O20.0263 (7)0.0255 (7)0.0473 (8)−0.0082 (5)0.0007 (6)0.0072 (6)
O30.0694 (12)0.0396 (9)0.0948 (14)−0.0176 (8)−0.0373 (10)0.0257 (9)
O40.0474 (9)0.0555 (10)0.0560 (10)−0.0064 (8)−0.0259 (8)−0.0122 (8)
C130.0228 (8)0.0276 (9)0.0252 (9)−0.0127 (7)−0.0032 (7)0.0011 (7)

Geometric parameters (Å, °)

N2—C61.462 (2)C9—H9A0.9900
N2—C91.462 (2)C9—H9B0.9900
N2—C71.464 (2)C4—C51.382 (2)
N3—C101.496 (2)C4—H40.9500
N3—C81.499 (2)C15—C161.385 (2)
N3—C111.5082 (19)C15—C141.386 (2)
N3—H3N0.925 (19)C15—H150.9500
C7—C81.513 (2)C16—H160.9500
C7—H7A0.9900C5—H50.9500
C7—H7B0.9900C14—C131.389 (2)
N1—C11.336 (2)C6—H6A0.9900
N1—C51.340 (2)C6—H6B0.9900
C2—C11.379 (2)C1—H10.9500
C2—C31.388 (2)C12—C131.381 (2)
C2—H20.9500C12—H120.9500
C10—C91.515 (2)O1—C171.312 (2)
C10—H10A0.9900O1—H1A0.93 (2)
C10—H10B0.9900C17—O21.214 (2)
C8—H8A0.9900C17—C181.486 (2)
C8—H8B0.9900Cl1—O61.4129 (17)
C3—C41.388 (2)Cl1—O51.4135 (14)
C3—C61.508 (2)Cl1—O31.4271 (16)
N4—C161.338 (2)Cl1—O41.4329 (15)
N4—C121.339 (2)C18—C18i1.323 (4)
C11—C141.507 (2)C18—H180.9500
C11—H11A0.9900C13—H130.9500
C11—H11B0.9900
C6—N2—C9109.37 (13)C10—C9—H9B109.6
C6—N2—C7110.81 (13)H9A—C9—H9B108.1
C9—N2—C7109.43 (13)C5—C4—C3119.24 (15)
C10—N3—C8109.52 (12)C5—C4—H4120.4
C10—N3—C11113.55 (12)C3—C4—H4120.4
C8—N3—C11113.77 (13)C16—C15—C14119.15 (16)
C10—N3—H3N107.0 (11)C16—C15—H15120.4
C8—N3—H3N107.2 (11)C14—C15—H15120.4
C11—N3—H3N105.2 (11)N4—C16—C15123.15 (16)
N2—C7—C8110.08 (13)N4—C16—H16118.4
N2—C7—H7A109.6C15—C16—H16118.4
C8—C7—H7A109.6N1—C5—C4123.06 (16)
N2—C7—H7B109.6N1—C5—H5118.5
C8—C7—H7B109.6C4—C5—H5118.5
H7A—C7—H7B108.2C15—C14—C13117.85 (15)
C1—N1—C5117.52 (15)C15—C14—C11120.58 (15)
C1—C2—C3119.45 (17)C13—C14—C11121.53 (15)
C1—C2—H2120.3N2—C6—C3113.82 (14)
C3—C2—H2120.3N2—C6—H6A108.8
N3—C10—C9109.59 (13)C3—C6—H6A108.8
N3—C10—H10A109.8N2—C6—H6B108.8
C9—C10—H10A109.8C3—C6—H6B108.8
N3—C10—H10B109.8H6A—C6—H6B107.7
C9—C10—H10B109.8N1—C1—C2123.08 (16)
H10A—C10—H10B108.2N1—C1—H1118.5
N3—C8—C7109.62 (13)C2—C1—H1118.5
N3—C8—H8A109.7N4—C12—C13123.18 (16)
C7—C8—H8A109.7N4—C12—H12118.4
N3—C8—H8B109.7C13—C12—H12118.4
C7—C8—H8B109.7C17—O1—H1A112.1 (14)
H8A—C8—H8B108.2O2—C17—O1124.70 (16)
C4—C3—C2117.62 (16)O2—C17—C18122.91 (16)
C4—C3—C6122.93 (15)O1—C17—C18112.39 (15)
C2—C3—C6119.36 (15)O6—Cl1—O5111.03 (11)
C16—N4—C12117.42 (14)O6—Cl1—O3109.67 (14)
C14—C11—N3113.66 (12)O5—Cl1—O3109.73 (11)
C14—C11—H11A108.8O6—Cl1—O4109.55 (12)
N3—C11—H11A108.8O5—Cl1—O4109.66 (10)
C14—C11—H11B108.8O3—Cl1—O4107.13 (10)
N3—C11—H11B108.8C18i—C18—C17121.9 (2)
H11A—C11—H11B107.7C18i—C18—H18119.1
N2—C9—C10110.42 (13)C17—C18—H18119.1
N2—C9—H9A109.6C12—C13—C14119.23 (15)
C10—C9—H9A109.6C12—C13—H13120.4
N2—C9—H9B109.6C14—C13—H13120.4
C6—N2—C7—C8−178.35 (13)C1—N1—C5—C40.3 (3)
C9—N2—C7—C860.97 (17)C3—C4—C5—N10.5 (3)
C8—N3—C10—C9−57.20 (16)C16—C15—C14—C13−0.8 (2)
C11—N3—C10—C9174.41 (12)C16—C15—C14—C11−178.52 (15)
C10—N3—C8—C757.58 (16)N3—C11—C14—C15−101.07 (17)
C11—N3—C8—C7−174.15 (12)N3—C11—C14—C1381.28 (19)
N2—C7—C8—N3−59.62 (17)C9—N2—C6—C3−170.06 (14)
C1—C2—C3—C41.9 (3)C7—N2—C6—C369.22 (18)
C1—C2—C3—C6−174.69 (16)C4—C3—C6—N228.0 (2)
C10—N3—C11—C1459.12 (18)C2—C3—C6—N2−155.56 (16)
C8—N3—C11—C14−67.06 (18)C5—N1—C1—C20.1 (3)
C6—N2—C9—C10177.63 (14)C3—C2—C1—N1−1.2 (3)
C7—N2—C9—C10−60.81 (17)C16—N4—C12—C130.2 (2)
N3—C10—C9—N259.18 (17)O2—C17—C18—C18i−18.1 (3)
C2—C3—C4—C5−1.6 (2)O1—C17—C18—C18i160.9 (2)
C6—C3—C4—C5174.91 (16)N4—C12—C13—C14−1.6 (3)
C12—N4—C16—C150.9 (2)C15—C14—C13—C121.8 (2)
C14—C15—C16—N4−0.6 (3)C11—C14—C13—C12179.51 (15)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···N4ii0.925 (19)1.884 (19)2.8067 (19)175.0 (17)
O1—H1A···N1iii0.93 (2)1.68 (2)2.6081 (19)178 (2)
C10—H10A···O3iv0.992.373.281 (2)153 (2)
C12—H12···O6v0.952.493.138 (3)126 (2)

Symmetry codes: (ii) x−1, y, z; (iii) x, y+1, z; (iv) x−1, y+1, z; (v) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2492).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Martin, D., Supkowski, R. M. & LaDuca, R. L. (2009). Dalton Trans. pp. 514–520. [PubMed]
  • Palmer, D. (2005). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.
  • Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography