PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1983.
Published online 2009 July 25. doi:  10.1107/S1600536809028426
PMCID: PMC2977373

4-{[(5-Methyl-2-fur­yl)methyl­ene]hydrazinocarbon­yl}pyridinium chloride monohydrate

Abstract

The title compound, C12H12N3O2 +·Cl·H2O, was prepared by the reaction of N′-[(5-methyl-2-fur­yl)methyl­ene]isonicotino­hydrazide and hydro­chloric acid at room temperature. The entire molecule is approximately planar with a maximum deviation of 0.047 (2) Å. An intramolecular C—H(...)O interaction is observed. O—H(...)Cl, N—H(...)Cl, N—H(...)O, N—H(...)N, C—H(...)Cl and C—H(...)O hydrogen-bonds stabilize the crystal structure.

Related literature

Schiff bases have been used extensively as ligands in the field of coordination chemistry, see: Cui et al. (2005 [triangle]). For their anti­microbial and anti­cancer applications, see: Tarafder et al. (2000 [triangle]) and Deschamps et al. (2003 [triangle]), respectively.

An external file that holds a picture, illustration, etc.
Object name is e-65-o1983-scheme1.jpg

Experimental

Crystal data

  • C12H12N3O2 +·Cl·H2O
  • M r = 283.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1983-efi1.jpg
  • a = 8.5258 (17) Å
  • b = 14.435 (3) Å
  • c = 13.625 (4) Å
  • β = 123.55 (2)°
  • V = 1397.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.11 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: none
  • 13328 measured reflections
  • 3187 independent reflections
  • 2715 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.07
  • 3187 reflections
  • 180 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028426/at2845sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028426/at2845Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Natural Science Foundation of Shandong Province (No.Y2008B30).

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Cui et al., 2005). And they have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). The title compound (I) was synthesized and we report its crystal structure here.

In the crystal structure of (I) (Fig. 1), the carbon and nitrogen atoms are nearly the same plane with a maximum deviation of 0.047Å for N2. There are intra- and intermolecular O—H···Cl, N—H···Cl, N—H···O, N—H···N, C—H···Cl and C—H···O hydrogen-bonds to stabilize the crystal structure (Table 1).

Experimental

A mixture of N'-[(5-methyl-2-furyl)methylene]isonicotinohydrazide (0.02 mol) and hydrochloric acid (0.01 mol) was stirred with ethanol (50 ml) at 298 K for 2 h, then afford the title compound (2.61 g, yield 92%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol and trichloromethane (1:1) at room temperature.

Refinement

The H atoms of the water molecule were found from a difference Fourier map and refined freely. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2–1.5Ueq(C,N).

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C12H12N3O2+·Cl·H2OF(000) = 592
Mr = 283.71Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2715 reflections
a = 8.5258 (17) Åθ = 3.1–27.5°
b = 14.435 (3) ŵ = 0.28 mm1
c = 13.625 (4) ÅT = 293 K
β = 123.55 (2)°Bar, yellow
V = 1397.5 (7) Å30.20 × 0.15 × 0.11 mm
Z = 4

Data collection

Bruker P4 diffractometer2715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 27.5°, θmin = 3.1°
Detector resolution: 3 pixels mm-1h = −10→11
ω scansk = −18→18
13328 measured reflectionsl = −17→17
3187 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0543P)2 + 0.3029P] where P = (Fo2 + 2Fc2)/3
3187 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.22892 (6)−0.42533 (3)−0.18006 (4)0.06023 (16)
O10.51022 (13)0.04123 (6)0.13453 (8)0.0380 (2)
O20.05971 (14)−0.22008 (7)−0.02944 (10)0.0536 (3)
N10.16922 (14)−0.04732 (7)−0.03026 (9)0.0327 (2)
N2−0.00554 (14)−0.08118 (7)−0.11953 (9)0.0327 (2)
H2A−0.0844−0.0467−0.17780.039*
N3−0.57485 (15)−0.28167 (8)−0.36865 (9)0.0392 (3)
H3A−0.6822−0.3057−0.41980.047*
C10.8247 (2)0.07121 (14)0.30399 (16)0.0616 (5)
H1B0.91410.12090.33970.092*
H1C0.87790.02150.28470.092*
H1D0.79410.04930.35800.092*
C20.65193 (19)0.10503 (11)0.19547 (13)0.0419 (3)
C30.5985 (2)0.18739 (10)0.14057 (14)0.0469 (4)
H3B0.66950.24150.16410.056*
C40.4137 (2)0.17617 (10)0.04032 (13)0.0441 (3)
H4A0.33950.2216−0.01450.053*
C50.36538 (19)0.08648 (9)0.03927 (12)0.0354 (3)
C60.19437 (19)0.03842 (9)−0.04240 (11)0.0359 (3)
H6A0.09780.0707−0.10670.043*
C7−0.04668 (16)−0.16914 (9)−0.11160 (10)0.0321 (3)
C8−0.23608 (16)−0.20547 (8)−0.20798 (10)0.0301 (3)
C9−0.37266 (17)−0.15335 (9)−0.30253 (11)0.0365 (3)
H9A−0.3495−0.0920−0.31150.044*
C10−0.54274 (18)−0.19394 (10)−0.38265 (11)0.0404 (3)
H10A−0.6356−0.1601−0.44680.049*
C11−0.4484 (2)−0.33342 (10)−0.27924 (13)0.0441 (3)
H11A−0.4768−0.3942−0.27210.053*
C12−0.27438 (19)−0.29683 (9)−0.19686 (12)0.0413 (3)
H12A−0.1837−0.3330−0.13460.050*
O1W−0.3179 (3)−0.06393 (18)−0.5308 (2)0.1060 (7)
H2W1−0.282 (4)−0.0189 (19)−0.481 (2)0.093 (8)*
H1W1−0.419 (4)−0.0676 (18)−0.566 (2)0.084 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0599 (3)0.0341 (2)0.0513 (2)−0.00819 (16)0.00847 (19)−0.00564 (15)
O10.0337 (5)0.0317 (5)0.0423 (5)−0.0068 (4)0.0170 (4)−0.0055 (4)
O20.0291 (5)0.0402 (5)0.0497 (6)−0.0051 (4)−0.0044 (4)0.0125 (5)
N10.0253 (5)0.0331 (5)0.0312 (5)−0.0053 (4)0.0104 (4)−0.0060 (4)
N20.0240 (5)0.0305 (5)0.0292 (5)−0.0022 (4)0.0056 (4)−0.0012 (4)
N30.0252 (5)0.0466 (7)0.0317 (5)−0.0085 (5)0.0070 (4)−0.0110 (5)
C10.0368 (8)0.0758 (12)0.0565 (10)−0.0073 (8)0.0159 (7)−0.0122 (9)
C20.0348 (6)0.0454 (7)0.0472 (8)−0.0143 (6)0.0236 (6)−0.0167 (6)
C30.0515 (8)0.0396 (7)0.0572 (9)−0.0204 (7)0.0348 (7)−0.0155 (7)
C40.0531 (8)0.0334 (7)0.0484 (8)−0.0089 (6)0.0297 (7)−0.0025 (6)
C50.0377 (7)0.0321 (6)0.0359 (6)−0.0053 (5)0.0200 (6)−0.0047 (5)
C60.0348 (6)0.0332 (6)0.0335 (6)−0.0030 (5)0.0151 (5)−0.0032 (5)
C70.0221 (5)0.0321 (6)0.0305 (6)−0.0002 (5)0.0072 (5)−0.0007 (5)
C80.0217 (5)0.0319 (6)0.0282 (5)−0.0003 (5)0.0084 (5)−0.0021 (5)
C90.0278 (6)0.0365 (6)0.0326 (6)−0.0007 (5)0.0089 (5)0.0038 (5)
C100.0262 (6)0.0476 (8)0.0302 (6)0.0008 (6)0.0047 (5)0.0022 (5)
C110.0386 (7)0.0333 (7)0.0435 (7)−0.0094 (6)0.0120 (6)−0.0066 (6)
C120.0319 (6)0.0307 (6)0.0384 (7)−0.0011 (5)0.0050 (5)0.0010 (5)
O1W0.0743 (12)0.152 (2)0.0905 (13)−0.0102 (12)0.0446 (11)−0.0516 (13)

Geometric parameters (Å, °)

O1—C51.3655 (17)C3—H3B0.9300
O1—C21.3742 (16)C4—C51.3566 (19)
O2—C71.2225 (16)C4—H4A0.9300
N1—C61.2823 (17)C5—C61.4324 (18)
N1—N21.3911 (14)C6—H6A0.9300
N2—C71.3375 (16)C7—C81.5044 (16)
N2—H2A0.8600C8—C121.3868 (18)
N3—C111.3239 (18)C8—C91.3869 (17)
N3—C101.3314 (19)C9—C101.3741 (18)
N3—H3A0.8600C9—H9A0.9300
C1—C21.479 (2)C10—H10A0.9300
C1—H1B0.9600C11—C121.3780 (18)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—H12A0.9300
C2—C31.343 (2)O1W—H2W10.87 (3)
C3—C41.412 (2)O1W—H1W10.72 (3)
C5—O1—C2106.56 (11)C4—C5—C6130.05 (13)
C6—N1—N2113.64 (11)O1—C5—C6120.28 (11)
C7—N2—N1117.70 (10)N1—C6—C5122.56 (12)
C7—N2—H2A121.1N1—C6—H6A118.7
N1—N2—H2A121.1C5—C6—H6A118.7
C11—N3—C10122.76 (11)O2—C7—N2123.37 (11)
C11—N3—H3A118.6O2—C7—C8119.01 (11)
C10—N3—H3A118.6N2—C7—C8117.61 (10)
C2—C1—H1B109.5C12—C8—C9119.33 (11)
C2—C1—H1C109.5C12—C8—C7116.11 (11)
H1B—C1—H1C109.5C9—C8—C7124.53 (11)
C2—C1—H1D109.5C10—C9—C8118.83 (13)
H1B—C1—H1D109.5C10—C9—H9A120.6
H1C—C1—H1D109.5C8—C9—H9A120.6
C3—C2—O1110.02 (13)N3—C10—C9120.13 (12)
C3—C2—C1133.87 (14)N3—C10—H10A119.9
O1—C2—C1116.11 (14)C9—C10—H10A119.9
C2—C3—C4106.92 (13)N3—C11—C12119.73 (13)
C2—C3—H3B126.5N3—C11—H11A120.1
C4—C3—H3B126.5C12—C11—H11A120.1
C5—C4—C3106.83 (14)C11—C12—C8119.21 (12)
C5—C4—H4A126.6C11—C12—H12A120.4
C3—C4—H4A126.6C8—C12—H12A120.4
C4—C5—O1109.67 (12)H2W1—O1W—H1W1111 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W1···Cl1i0.86 (3)2.40 (3)3.229 (3)162 (3)
O1W—H1W1···Cl1ii0.72 (3)2.51 (3)3.225 (3)177 (2)
N2—H2A···Cl1i0.862.393.2243 (15)164
N3—H3A···O2ii0.861.892.639 (2)144
N3—H3A···N1ii0.862.503.2238 (18)142
C3—H3B···Cl1iii0.932.763.6574 (19)162
C6—H6A···Cl1i0.932.693.5374 (18)151
C9—H9A···Cl1i0.932.643.5656 (18)171
C11—H11A···O1ii0.932.453.1694 (19)135
C12—H12A···O20.932.392.713 (2)100

Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) x−1, −y−1/2, z−1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2845).

References

  • Bruker (1997). SMART andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cui, S.-L., Zhou, F.-Y. & Lin, X.-F. (2005). Acta Cryst. E61, o3198–o3199.
  • Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem.42, 7366–7368. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography