PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1014.
Published online 2009 July 31. doi:  10.1107/S1600536809029936
PMCID: PMC2977372

Bis(benzohydrazide-κ2 O,N′)bis­(nitrato-κO)copper(II)

Abstract

In the title compound, [Cu(NO3)2(C7H8N2O)2], the CuII atom is located on a centre of inversion, and is coordinated by two bidentate benzohydrazide ligands and two monodentate nitrate anions in an axially distorted octa­hedral geometry within an N2O4 donor set. The crystal structure is stabilized by N—H(...)O and weak N—H(...)N hydrogen bonds.

Related literature

For related structures, see: Sousa-Pedrares et al. (2008 [triangle]); Despaigne et al. (2009 [triangle]); Hernández-Gil et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1014-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C7H8N2O)2]
  • M r = 459.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1014-efi1.jpg
  • a = 10.259 (5) Å
  • b = 10.078 (5) Å
  • c = 9.762 (4) Å
  • β = 106.85 (1)°
  • V = 966.0 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.19 mm−1
  • T = 293 K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 3237 measured reflections
  • 1768 independent reflections
  • 1278 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.094
  • S = 1.05
  • 1768 reflections
  • 145 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029936/tk2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029936/tk2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

supplementary crystallographic information

Comment

The CuII cation in (I), Fig. 1, is located on a centre of inversion. The CuII ion is coordinated to two neutral hydrazone molecules functioning as chelating ligands through the amine-N and carbonyl-O atoms. The equatorial bond Cu–O and Cu-N lengths [1.940 (2) and 1.970 (3) Å, respectively] are similar to those observed in related compounds (Sousa-Pedrares et al.<i\>, 2008; Despaigne et al.<i\>, 2009). The remaining coordination positions are occupied by two nitrate-O atoms which are located in apical positions [O1–Cu–O3 = 82.49 (8) °; and Cu–O3 = 2.589 (2) Å]. The axially distorted N2O4 coordination geometry is consistent with a Jahn–Teller effect (Hernández-Gilet al.<i\>, 2009). In the crystal structure, intermolecular N—H···O and (weak) N—H···N hydrogen bonds interactions link the molecules into a 2-D array (Table 1).

Experimental

All purchased chemicals and solvents were reagent grade and used without further purification. To a mixture of benzohydrazide (0.2721 g, 2 mmol) and methanol (10 ml) was added dropwise a solution of copper nitrate trihydrate (0.2416 g, 1 mmol) in methanol (10 ml). The resulting green solution was stirred and refluxed for 2 h. The compound was filtered, and slow evaporation of the filtrate gave 0.2930 g (63.7 %) of (I). Analysis: calculated for C14H16CuN4O8: C 36.57, H 3.51, N 18.28 %; found: C 36.55, H 3.48, N 18.13. Crystals were obtained from slow evaporation of an ethanol solution of (I).

Refinement

The H atoms of the NH and NH2 groups were located in the Fourier difference maps and refined with N—H = 0.96 (2) Å. The remaining H atoms were placed geometrically and refined in the riding model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: (i) -x, -y, -z

Crystal data

[Cu(NO3)2(C7H8N2O)2]F(000) = 470
Mr = 459.86Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1847 reflections
a = 10.259 (5) Åθ = 0.4–25.4°
b = 10.078 (5) ŵ = 1.19 mm1
c = 9.762 (4) ÅT = 293 K
β = 106.85 (1)°Prism, blue
V = 966.0 (8) Å30.10 × 0.10 × 0.10 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer1278 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
graphiteθmax = 25.4°, θmin = 2.9°
π scansh = −12→12
3237 measured reflectionsk = −12→11
1768 independent reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3254P] where P = (Fo2 + 2Fc2)/3
1768 reflections(Δ/σ)max = 0.003
145 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.00000.00000.04486 (19)
O1−0.19749 (19)0.00452 (19)−0.0567 (2)0.0488 (5)
O2−0.0400 (3)−0.1377 (2)−0.3265 (2)0.0779 (8)
O3−0.0372 (2)0.0668 (2)−0.2647 (2)0.0604 (6)
O4−0.1549 (3)0.0048 (2)−0.4748 (2)0.0777 (8)
N1−0.1582 (2)0.2195 (3)−0.0063 (3)0.0490 (6)
H1−0.183 (3)0.3054 (19)0.001 (3)0.058 (9)*
N2−0.0173 (2)0.1913 (2)0.0322 (2)0.0431 (6)
H2A0.020 (3)0.212 (3)0.128 (2)0.065 (10)*
H2B0.023 (3)0.243 (3)−0.020 (3)0.061 (10)*
N3−0.0780 (3)−0.0207 (2)−0.3550 (3)0.0492 (6)
C1−0.2427 (3)0.1197 (3)−0.0488 (3)0.0466 (7)
C2−0.3914 (3)0.1439 (3)−0.0875 (3)0.0544 (8)
C3−0.4773 (3)0.0501 (4)−0.1710 (4)0.0732 (10)
H3−0.4410−0.0246−0.20240.088*
C4−0.6155 (4)0.0674 (6)−0.2074 (4)0.0973 (14)
H4−0.67230.0049−0.26530.117*
C5−0.6709 (4)0.1739 (6)−0.1605 (5)0.1008 (16)
H5−0.76490.1841−0.18570.121*
C6−0.5871 (5)0.2671 (5)−0.0752 (6)0.1043 (16)
H6−0.62480.3400−0.04230.125*
C7−0.4457 (4)0.2523 (4)−0.0379 (5)0.0804 (11)
H7−0.38900.31500.01980.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0462 (3)0.0307 (3)0.0588 (3)−0.0001 (2)0.0170 (2)−0.0012 (2)
O10.0476 (11)0.0350 (11)0.0640 (12)−0.0019 (10)0.0166 (10)−0.0027 (10)
O20.146 (2)0.0381 (13)0.0555 (13)0.0204 (14)0.0385 (14)0.0072 (10)
O30.0891 (17)0.0414 (12)0.0477 (12)−0.0098 (12)0.0154 (12)−0.0092 (10)
O40.104 (2)0.0504 (15)0.0546 (14)−0.0168 (13)−0.0155 (14)0.0068 (11)
N10.0501 (15)0.0358 (14)0.0573 (15)0.0064 (12)0.0097 (12)−0.0033 (12)
N20.0495 (15)0.0348 (13)0.0426 (14)−0.0011 (11)0.0095 (12)−0.0008 (11)
N30.0673 (16)0.0380 (16)0.0437 (14)−0.0045 (12)0.0182 (13)0.0015 (11)
C10.0523 (17)0.0462 (19)0.0420 (16)0.0038 (14)0.0147 (14)0.0047 (13)
C20.0501 (17)0.060 (2)0.0540 (18)0.0083 (16)0.0171 (15)0.0102 (16)
C30.054 (2)0.099 (3)0.062 (2)0.000 (2)0.0083 (17)−0.004 (2)
C40.057 (2)0.150 (5)0.075 (3)−0.007 (3)0.003 (2)0.005 (3)
C50.051 (2)0.136 (5)0.111 (4)0.017 (3)0.016 (2)0.051 (3)
C60.079 (3)0.097 (4)0.153 (4)0.040 (3)0.059 (3)0.039 (3)
C70.065 (2)0.068 (3)0.114 (3)0.014 (2)0.035 (2)0.011 (2)

Geometric parameters (Å, °)

Cu1—O1i1.940 (2)N2—H2B0.912 (18)
Cu1—O11.940 (2)C1—C21.482 (4)
Cu1—N2i1.970 (3)C2—C71.377 (5)
Cu1—N21.970 (3)C2—C31.385 (5)
Cu1—O32.589 (2)C3—C41.369 (5)
O1—C11.261 (3)C3—H30.9300
O2—N31.249 (3)C4—C51.355 (7)
O3—N31.231 (3)C4—H40.9300
O4—N31.233 (3)C5—C61.378 (7)
N1—C11.314 (4)C5—H50.9300
N1—N21.413 (3)C6—C71.397 (5)
N1—H10.911 (17)C6—H60.9300
N2—H2A0.929 (18)C7—H70.9300
O1i—Cu1—O1180.00 (3)O4—N3—O2118.7 (3)
O1i—Cu1—N2i83.53 (9)O1—C1—N1120.2 (3)
O1—Cu1—N2i96.47 (9)O1—C1—C2120.4 (3)
O1i—Cu1—N296.47 (9)N1—C1—C2119.4 (3)
O1—Cu1—N283.53 (9)C7—C2—C3119.7 (3)
N2i—Cu1—N2180.00 (14)C7—C2—C1122.2 (3)
O1i—Cu1—O397.51 (8)C3—C2—C1118.0 (3)
O1—Cu1—O382.49 (8)C4—C3—C2120.0 (4)
N2i—Cu1—O395.12 (8)C4—C3—H3120.0
N2—Cu1—O384.88 (8)C2—C3—H3120.0
C1—O1—Cu1112.10 (18)C5—C4—C3121.2 (5)
N3—O3—Cu1116.74 (17)C5—C4—H4119.4
C1—N1—N2117.4 (2)C3—C4—H4119.4
C1—N1—H1125.2 (19)C4—C5—C6119.7 (4)
N2—N1—H1117.4 (19)C4—C5—H5120.2
N1—N2—Cu1106.71 (17)C6—C5—H5120.2
N1—N2—H2A108.4 (19)C5—C6—C7120.2 (4)
Cu1—N2—H2A111 (2)C5—C6—H6119.9
N1—N2—H2B109.6 (19)C7—C6—H6119.9
Cu1—N2—H2B113 (2)C2—C7—C6119.2 (4)
H2A—N2—H2B108 (3)C2—C7—H7120.4
O3—N3—O4121.4 (3)C6—C7—H7120.4
O3—N3—O2119.8 (3)
N2i—Cu1—O1—C1−179.41 (19)N2—N1—C1—O1−1.4 (4)
N2—Cu1—O1—C10.59 (19)N2—N1—C1—C2178.8 (2)
O3—Cu1—O1—C1−85.07 (19)O1—C1—C2—C7157.9 (3)
O1i—Cu1—O3—N3105.7 (2)N1—C1—C2—C7−22.2 (4)
O1—Cu1—O3—N3−74.3 (2)O1—C1—C2—C3−19.0 (4)
N2i—Cu1—O3—N321.6 (2)N1—C1—C2—C3160.8 (3)
N2—Cu1—O3—N3−158.4 (2)C7—C2—C3—C41.9 (5)
C1—N1—N2—Cu11.7 (3)C1—C2—C3—C4179.0 (3)
O1i—Cu1—N2—N1178.82 (16)C2—C3—C4—C5−1.5 (6)
O1—Cu1—N2—N1−1.18 (16)C3—C4—C5—C60.3 (7)
O3—Cu1—N2—N181.82 (16)C4—C5—C6—C70.4 (7)
Cu1—O3—N3—O4146.4 (2)C3—C2—C7—C6−1.2 (5)
Cu1—O3—N3—O2−34.6 (3)C1—C2—C7—C6−178.2 (3)
Cu1—O1—C1—N10.2 (3)C5—C6—C7—C20.1 (6)
Cu1—O1—C1—C2−179.91 (19)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.91 (2)1.94 (2)2.794 (4)156 (3)
N1—H1···N3ii0.91 (2)2.64 (2)3.371 (4)138 (2)
N2—H2A···O2i0.93 (2)2.03 (2)2.813 (3)141 (3)
N2—H2A···O3ii0.93 (2)2.60 (3)3.186 (3)122 (2)
N2—H2B···O2iii0.91 (2)1.97 (2)2.834 (3)159 (3)

Symmetry codes: (ii) x, −y+1/2, z+1/2; (i) −x, −y, −z; (iii) −x, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2516).

References

  • Despaigne, A. A. R., Da Silva, J. G., do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). Inorg. Chim. Acta, 362, 2117–2122.
  • Hernández-Gil, J., Perelló, L., Ortiz, R., Alzuet, G., González-Álvarez, M. & Liu-González, M. (2009). Polyhedron, 28, 138–144.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography