PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1875.
Published online 2009 July 15. doi:  10.1107/S1600536809026877
PMCID: PMC2977369

3-(2-Furylmethyl­ene)-1,5-dioxaspiro­[5.5]undecane-2,4-dione

Abstract

In the title mol­ecule, C14H14O5, the 1,3-dioxane ring is in an envelope conformation with the ring C atom common to the cyclo­hexane ring forming the flap. The other five atoms of the 1,3-dioxane ring are essentially planar [maximum deviation from the least-squares plane = 0.041 (3) Å] and form a dihedral angle of 13.75 (2)° with the furan ring. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds form extended chains along [101].

Related literature

For the applications and conformational features of spiro compounds, see: Yaozhong et al. (1998 [triangle]); Lian et al. (2008 [triangle]); Wei et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1875-scheme1.jpg

Experimental

Crystal data

  • C14H14O5
  • M r = 262.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1875-efi1.jpg
  • a = 7.0634 (14) Å
  • b = 9.5103 (19) Å
  • c = 10.183 (2) Å
  • α = 64.91 (3)°
  • β = 82.38 (3)°
  • γ = 84.76 (3)°
  • V = 613.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.18 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 6043 measured reflections
  • 2779 independent reflections
  • 1456 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.285
  • S = 1.11
  • 2779 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026877/lh2856sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026877/lh2856Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Yaozhong et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity.

The 1,3-dioxane ring is in an envelope conformation with atom C1 forming the flap and the mean plane of the other five atoms (O1/O2/C1/C7—C9) form a dihedral angle of 13.75 (2)° with the furan ring O5/C11-C14). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in conc. sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of furan-2-carbaldehyde (5.76 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an acetone-ethylacetate (2:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
Fig. 2.
Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C14H14O5Z = 2
Mr = 262.25F(000) = 276
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0634 (14) ÅCell parameters from 6043 reflections
b = 9.5103 (19) Åθ = 3.5–27.5°
c = 10.183 (2) ŵ = 0.11 mm1
α = 64.91 (3)°T = 293 K
β = 82.38 (3)°Block, colorless
γ = 84.76 (3)°0.18 × 0.15 × 0.12 mm
V = 613.6 (2) Å3

Data collection

Bruker SMART CCD diffractometer1456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 27.5°, θmin = 3.5°
ω scansh = −9→9
6043 measured reflectionsk = −12→12
2779 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.1559P)2 + 0.0401P] where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.2535 (3)0.2890 (3)0.7823 (3)0.0604 (7)
O10.0683 (3)0.4802 (3)0.8363 (3)0.0619 (7)
O40.1675 (3)0.1935 (4)0.6368 (3)0.0709 (8)
O5−0.4171 (3)0.3169 (3)0.4940 (3)0.0651 (7)
O3−0.2004 (4)0.5790 (3)0.7400 (3)0.0726 (8)
C9−0.0519 (5)0.3713 (4)0.6897 (4)0.0539 (8)
C20.3594 (5)0.3844 (4)0.9383 (4)0.0611 (9)
H2A0.31910.43431.00350.073*
H2B0.43180.45770.85250.073*
C7−0.0735 (5)0.4822 (4)0.7561 (4)0.0550 (8)
C80.1248 (4)0.2756 (4)0.7003 (4)0.0524 (8)
C10−0.2000 (5)0.3676 (4)0.6195 (4)0.0556 (9)
H10A−0.30120.43510.62570.067*
C10.1860 (5)0.3406 (4)0.8941 (4)0.0553 (8)
C13−0.2757 (5)0.1442 (5)0.4174 (4)0.0637 (9)
H13A−0.25410.07650.37230.076*
C60.0755 (5)0.2159 (4)1.0210 (4)0.0591 (9)
H6A−0.02950.18630.98670.071*
H6B0.02240.25601.09180.071*
C11−0.2361 (4)0.2852 (4)0.5395 (4)0.0542 (8)
C14−0.4363 (6)0.2284 (5)0.4246 (5)0.0697 (10)
H14A−0.54730.22540.38600.084*
C50.2062 (6)0.0738 (5)1.0931 (5)0.0708 (11)
H5A0.1356−0.00241.17790.085*
H5B0.24780.02721.02540.085*
C40.3771 (6)0.1165 (5)1.1386 (5)0.0770 (12)
H4A0.33610.15201.21460.092*
H4B0.46080.02511.17870.092*
C30.4854 (5)0.2409 (5)1.0140 (5)0.0751 (12)
H3A0.54070.20050.94400.090*
H3B0.58930.27021.04960.090*
C12−0.1479 (5)0.1787 (5)0.4913 (4)0.0654 (10)
H12A−0.02410.13690.50550.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0605 (14)0.0740 (17)0.0588 (14)0.0104 (11)−0.0124 (11)−0.0400 (13)
O10.0783 (16)0.0523 (15)0.0644 (15)0.0134 (11)−0.0225 (12)−0.0321 (12)
O40.0637 (14)0.089 (2)0.0877 (19)0.0176 (13)−0.0172 (13)−0.0652 (17)
O50.0641 (14)0.0686 (17)0.0778 (17)0.0096 (11)−0.0223 (12)−0.0433 (14)
O30.0799 (17)0.0654 (17)0.0807 (18)0.0260 (13)−0.0212 (14)−0.0403 (15)
C90.0649 (19)0.0522 (19)0.0511 (18)0.0083 (14)−0.0129 (14)−0.0280 (16)
C20.065 (2)0.060 (2)0.067 (2)−0.0029 (16)−0.0113 (16)−0.0333 (18)
C70.0639 (19)0.0490 (19)0.0562 (19)0.0063 (14)−0.0102 (15)−0.0264 (16)
C80.0567 (18)0.056 (2)0.0497 (17)0.0035 (14)−0.0042 (13)−0.0288 (16)
C100.0621 (19)0.055 (2)0.0515 (18)0.0086 (14)−0.0084 (14)−0.0254 (16)
C10.070 (2)0.052 (2)0.0520 (18)0.0160 (15)−0.0160 (15)−0.0307 (16)
C130.079 (2)0.060 (2)0.067 (2)0.0098 (17)−0.0219 (17)−0.0397 (19)
C60.0599 (19)0.059 (2)0.066 (2)−0.0009 (15)−0.0098 (16)−0.0322 (18)
C110.0547 (18)0.0522 (19)0.061 (2)0.0055 (13)−0.0150 (14)−0.0279 (17)
C140.074 (2)0.072 (3)0.084 (3)0.0043 (18)−0.0272 (19)−0.049 (2)
C50.089 (3)0.053 (2)0.066 (2)0.0002 (18)−0.0142 (19)−0.0202 (19)
C40.093 (3)0.066 (3)0.077 (3)0.018 (2)−0.036 (2)−0.031 (2)
C30.063 (2)0.079 (3)0.101 (3)0.0110 (19)−0.028 (2)−0.052 (3)
C120.067 (2)0.065 (2)0.077 (2)0.0113 (17)−0.0228 (18)−0.041 (2)

Geometric parameters (Å, °)

O2—C81.361 (4)C13—C141.340 (5)
O2—C11.433 (4)C13—C121.390 (5)
O1—C71.368 (4)C13—H13A0.9300
O1—C11.438 (4)C6—C51.525 (5)
O4—C81.206 (4)C6—H6A0.9700
O5—C141.333 (5)C6—H6B0.9700
O5—C111.382 (4)C11—C121.371 (5)
O3—C71.199 (4)C14—H14A0.9300
C9—C101.354 (5)C5—C41.495 (6)
C9—C81.463 (5)C5—H5A0.9700
C9—C71.463 (5)C5—H5B0.9700
C2—C11.507 (5)C4—C31.493 (6)
C2—C31.522 (6)C4—H4A0.9700
C2—H2A0.9700C4—H4B0.9700
C2—H2B0.9700C3—H3A0.9700
C10—C111.405 (5)C3—H3B0.9700
C10—H10A0.9300C12—H12A0.9300
C1—C61.512 (5)
C8—O2—C1118.6 (2)C5—C6—H6A109.6
C7—O1—C1117.9 (3)C1—C6—H6B109.6
C14—O5—C11107.2 (3)C5—C6—H6B109.6
C10—C9—C8124.7 (3)H6A—C6—H6B108.1
C10—C9—C7116.0 (3)C12—C11—O5107.1 (3)
C8—C9—C7119.3 (3)C12—C11—C10140.0 (3)
C1—C2—C3110.5 (3)O5—C11—C10112.9 (3)
C1—C2—H2A109.5O5—C14—C13111.5 (3)
C3—C2—H2A109.5O5—C14—H14A124.2
C1—C2—H2B109.5C13—C14—H14A124.2
C3—C2—H2B109.5C4—C5—C6111.3 (3)
H2A—C2—H2B108.1C4—C5—H5A109.4
O3—C7—O1117.7 (3)C6—C5—H5A109.4
O3—C7—C9125.2 (3)C4—C5—H5B109.4
O1—C7—C9117.0 (3)C6—C5—H5B109.4
O4—C8—O2118.5 (3)H5A—C5—H5B108.0
O4—C8—C9125.1 (3)C3—C4—C5111.9 (3)
O2—C8—C9116.3 (3)C3—C4—H4A109.2
C9—C10—C11134.7 (3)C5—C4—H4A109.2
C9—C10—H10A112.7C3—C4—H4B109.2
C11—C10—H10A112.7C5—C4—H4B109.2
O2—C1—O1110.2 (3)H4A—C4—H4B107.9
O2—C1—C2106.7 (3)C4—C3—C2112.3 (3)
O1—C1—C2106.3 (3)C4—C3—H3A109.1
O2—C1—C6111.0 (3)C2—C3—H3A109.1
O1—C1—C6110.2 (3)C4—C3—H3B109.1
C2—C1—C6112.3 (3)C2—C3—H3B109.1
C14—C13—C12106.0 (4)H3A—C3—H3B107.9
C14—C13—H13A127.0C11—C12—C13108.1 (3)
C12—C13—H13A127.0C11—C12—H12A125.9
C1—C6—C5110.3 (3)C13—C12—H12A125.9
C1—C6—H6A109.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.593.470 (4)151
C14—H14A···O3ii0.932.503.230 (2)135
C10—H10A···O30.932.342.764 (3)107
C12—H12A···O40.932.272.879 (2)122

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2856).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ.24, 441–444.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem 28, 1501–1514.
  • Yaozhong, J., Song, X., Zhi, J., Deng, J., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185–3189.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography