PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2010.
Published online 2009 July 29. doi:  10.1107/S1600536809028931
PMCID: PMC2977367

2,5-Bis[2-(2-methoxy­ethoxy)phen­yl]-1,3,4-oxadiazole

Abstract

In the title compound, C20H22N2O5, the central 1,3,4-oxadiazole ring is essentially planar [r.m.s. deviation from the best plane of 0.0011 Å] and makes dihedral angles of 4.10 (3) and 13.32 (4)° with the two benzene rings. In the crystal structure, the packing is stabilized by weak non-classical inter­molecular C—H(...)N hydrogen bonds, which link the mol­ecules into an extended network.

Related literature

For the optical and electronic properties of 1,3,4-oxadizole and its dericatives, see: Emi & Toru (2006 [triangle]). Liu et al. (1997 [triangle]); Peng et al. (2006 [triangle]); Satoshi et al. (2000 [triangle]). For reference geometrical data: see: Tian et al. (2009 [triangle]). For related structures, see: Orgzall et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2010-scheme1.jpg

Experimental

Crystal data

  • C20H22N2O5
  • M r = 370.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2010-efi1.jpg
  • a = 7.7264 (15) Å
  • b = 13.886 (3) Å
  • c = 16.911 (3) Å
  • β = 96.42 (3)°
  • V = 1803.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.16 × 0.14 × 0.10 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.984, T max = 0.990
  • 13017 measured reflections
  • 4290 independent reflections
  • 3635 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.110
  • S = 1.04
  • 4290 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028931/pv2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028931/pv2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of Hebei University of Science & Technology (No. XL200746).

supplementary crystallographic information

Comment

The optical and electronic properties of 1,3,4-oxadizole have received great attention in the field of electroluminescence (Emi et al., 2006). A well known derivative of 1,3,4-oxadiazole, 2-(4-biphenyl)-5-(tert-butylphenyl)-1,3,4-oxadiazole (PBD), has been used as electron-injection material to improve the balance of charge carrier and to increase the photon/electron quantum efficiency (Liu et al., 1997) and the electron-transporting material in organic electroluminescence device (Satoshi et al., 2000). It has been demonstrated that modifying the side chains or inserting other heterocycles in 1,3,4-oxadizole system could result in good electroluminescent molecules as organic electroluminescence materials (Peng et al., 2006). As part of an investigation on potential electroluminescent molecules by modifying the side chains of 2,5-diaryl-1,3,4-oxadizole, we reporte here the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O3/C10/N1/N2/C11) is essentially planar, with an r.m.s. deviation for fitted atoms of 0.0011 Å. It makes dihedral angles of, 13.32 (4) and 4.10 (3)°, respectively, with the benzene rings (C4—C9) and (C12—C17). The crystal packing is stabilized by weak non-classical intermolecular C—H···N hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Tian et al. 2009). The crystal structure of a 2,5-diaryl-1,3,4-oxadiazole derivative have been reported (Orgzall et al., 2005).

Experimental

2,5-Di(o-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), NaH (0.5 g, 20 mmol) and 1-chloro-2-methoxyethane (0.75 g, 8 mmol) were added and dissolved in 50 ml of THF, the mixture was stirred refluxing for 10 h. giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 81% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate solution at room temperature.

Refinement

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and Uiso(H) = 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
Fig. 2.
Packing diagram for (I), with H bonds drawn as dashed lines; H-atom not involved in interactions have been excludeed

Crystal data

C20H22N2O5F(000) = 784
Mr = 370.40Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4968 reflections
a = 7.7264 (15) Åθ = 2.4–27.9°
b = 13.886 (3) ŵ = 0.10 mm1
c = 16.911 (3) ÅT = 293 K
β = 96.42 (3)°Prism, colourless
V = 1803.0 (6) Å30.16 × 0.14 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn diffractometer4290 independent reflections
Radiation source: rotating anode3635 reflections with I > 2σ(I)
confocalRint = 0.030
ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −9→10
Tmin = 0.984, Tmax = 0.990k = −13→18
13017 measured reflectionsl = −20→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0999P] where P = (Fo2 + 2Fc2)/3
4290 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.88655 (10)0.03469 (6)0.35096 (5)0.0284 (2)
O20.63462 (10)0.15549 (5)0.25616 (5)0.02362 (19)
O30.35245 (9)0.06943 (5)0.04514 (4)0.01871 (17)
O40.23221 (10)0.04689 (5)−0.10258 (4)0.02263 (18)
O50.18138 (11)0.24756 (6)−0.15011 (6)0.0307 (2)
N10.40253 (12)0.02963 (6)0.17243 (6)0.0230 (2)
N20.30539 (12)−0.04406 (6)0.13138 (6)0.0228 (2)
C10.89595 (18)−0.05579 (9)0.38968 (8)0.0337 (3)
H1A0.9211−0.04640.44600.051*
H1B0.9865−0.09370.37060.051*
H1C0.7866−0.08860.37870.051*
C20.76278 (15)0.09686 (9)0.38010 (7)0.0265 (3)
H2A0.80270.11610.43420.032*
H2B0.65240.06360.38040.032*
C30.73965 (15)0.18388 (8)0.32781 (7)0.0245 (2)
H3A0.68250.23480.35430.029*
H3B0.85190.20730.31560.029*
C40.60454 (14)0.22178 (7)0.19721 (7)0.0207 (2)
C50.66365 (15)0.31641 (8)0.20354 (7)0.0251 (2)
H50.72570.33780.25060.030*
C60.62996 (15)0.37886 (8)0.13967 (8)0.0281 (3)
H60.66810.44230.14450.034*
C70.53997 (16)0.34777 (8)0.06861 (8)0.0280 (3)
H70.52170.38940.02540.034*
C80.47746 (15)0.25413 (8)0.06264 (7)0.0235 (2)
H80.41580.23350.01530.028*
C90.50575 (14)0.19043 (7)0.12671 (6)0.0197 (2)
C100.42605 (13)0.09472 (7)0.11946 (6)0.0182 (2)
C110.27775 (13)−0.01706 (7)0.05765 (6)0.0176 (2)
C120.17690 (13)−0.06928 (7)−0.00691 (6)0.0177 (2)
C130.09329 (14)−0.15339 (7)0.01298 (7)0.0219 (2)
H130.1025−0.17310.06580.026*
C14−0.00307 (15)−0.20810 (8)−0.04446 (7)0.0250 (2)
H14−0.0577−0.2642−0.03040.030*
C15−0.01745 (15)−0.17859 (8)−0.12307 (7)0.0245 (2)
H15−0.0796−0.2161−0.16200.029*
C160.05963 (14)−0.09390 (8)−0.14445 (7)0.0219 (2)
H160.0471−0.0741−0.19730.026*
C170.15615 (13)−0.03817 (7)−0.08668 (6)0.0185 (2)
C180.20669 (15)0.08174 (8)−0.18286 (6)0.0238 (2)
H18A0.08330.0859−0.20100.029*
H18B0.26070.0385−0.21790.029*
C190.28879 (15)0.17939 (8)−0.18332 (7)0.0248 (2)
H19A0.40260.1780−0.15260.030*
H19B0.30400.1977−0.23750.030*
C200.25736 (17)0.34043 (8)−0.14647 (9)0.0329 (3)
H20A0.36440.3391−0.11170.049*
H20B0.17870.3855−0.12650.049*
H20C0.28050.3597−0.19880.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0249 (4)0.0240 (4)0.0367 (5)0.0018 (3)0.0058 (4)0.0001 (3)
O20.0248 (4)0.0227 (4)0.0218 (4)−0.0033 (3)−0.0042 (3)−0.0033 (3)
O30.0215 (4)0.0161 (4)0.0181 (4)−0.0008 (3)0.0002 (3)−0.0014 (3)
O40.0308 (4)0.0193 (4)0.0175 (4)−0.0038 (3)0.0014 (3)0.0012 (3)
O50.0235 (4)0.0208 (4)0.0497 (6)0.0002 (3)0.0120 (4)0.0026 (4)
N10.0257 (5)0.0205 (5)0.0215 (5)−0.0025 (4)−0.0034 (4)−0.0006 (3)
N20.0259 (5)0.0198 (5)0.0216 (5)−0.0030 (4)−0.0028 (4)0.0002 (3)
C10.0361 (7)0.0287 (6)0.0355 (7)0.0017 (5)−0.0001 (6)0.0022 (5)
C20.0234 (6)0.0327 (6)0.0227 (6)0.0019 (5)−0.0003 (4)−0.0062 (4)
C30.0203 (5)0.0274 (6)0.0243 (6)0.0003 (4)−0.0035 (4)−0.0091 (4)
C40.0174 (5)0.0205 (5)0.0248 (6)0.0020 (4)0.0043 (4)−0.0037 (4)
C50.0204 (5)0.0236 (6)0.0314 (6)−0.0018 (4)0.0031 (5)−0.0082 (4)
C60.0266 (6)0.0173 (5)0.0413 (7)−0.0023 (4)0.0079 (5)−0.0040 (5)
C70.0300 (6)0.0213 (6)0.0335 (7)0.0003 (4)0.0070 (5)0.0028 (4)
C80.0247 (6)0.0208 (5)0.0252 (6)0.0008 (4)0.0033 (4)−0.0009 (4)
C90.0172 (5)0.0186 (5)0.0234 (6)0.0012 (4)0.0030 (4)−0.0029 (4)
C100.0166 (5)0.0197 (5)0.0178 (5)0.0022 (4)−0.0001 (4)−0.0025 (4)
C110.0169 (5)0.0141 (5)0.0218 (5)0.0019 (4)0.0025 (4)0.0000 (4)
C120.0168 (5)0.0156 (5)0.0205 (5)0.0032 (4)0.0013 (4)−0.0026 (4)
C130.0221 (5)0.0191 (5)0.0242 (6)0.0020 (4)0.0013 (4)0.0016 (4)
C140.0238 (6)0.0181 (5)0.0328 (6)−0.0025 (4)0.0015 (5)−0.0006 (4)
C150.0212 (5)0.0218 (6)0.0295 (6)0.0004 (4)−0.0022 (5)−0.0075 (4)
C160.0221 (5)0.0235 (5)0.0199 (5)0.0036 (4)0.0010 (4)−0.0039 (4)
C170.0180 (5)0.0167 (5)0.0212 (5)0.0024 (4)0.0038 (4)−0.0015 (4)
C180.0278 (6)0.0263 (6)0.0170 (5)0.0018 (4)0.0008 (4)0.0022 (4)
C190.0227 (6)0.0262 (6)0.0260 (6)0.0028 (4)0.0051 (5)0.0057 (4)
C200.0271 (6)0.0227 (6)0.0492 (8)−0.0015 (5)0.0058 (6)0.0042 (5)

Geometric parameters (Å, °)

O1—C11.4149 (15)C6—H60.9300
O1—C21.4171 (14)C7—C81.3868 (16)
O2—C41.3577 (13)C7—H70.9300
O2—C31.4360 (13)C8—C91.3969 (15)
O3—C111.3593 (12)C8—H80.9300
O3—C101.3663 (13)C9—C101.4641 (15)
O4—C171.3594 (13)C11—C121.4611 (14)
O4—C181.4341 (13)C12—C131.3940 (15)
O5—C201.4154 (14)C12—C171.4085 (15)
O5—C191.4158 (14)C13—C141.3833 (15)
N1—C101.2996 (14)C13—H130.9300
N1—N21.4057 (13)C14—C151.3837 (17)
N2—C111.2967 (14)C14—H140.9300
C1—H1A0.9600C15—C161.3845 (16)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.3952 (15)
C2—C31.4963 (17)C16—H160.9300
C2—H2A0.9700C18—C191.4973 (16)
C2—H2B0.9700C18—H18A0.9700
C3—H3A0.9700C18—H18B0.9700
C3—H3B0.9700C19—H19A0.9700
C4—C51.3913 (15)C19—H19B0.9700
C4—C91.4108 (15)C20—H20A0.9600
C5—C61.3870 (17)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C71.3882 (18)
C1—O1—C2112.44 (10)N1—C10—O3112.30 (9)
C4—O2—C3117.88 (9)N1—C10—C9131.57 (10)
C11—O3—C10102.96 (8)O3—C10—C9116.00 (9)
C17—O4—C18117.63 (8)N2—C11—O3112.21 (9)
C20—O5—C19111.58 (9)N2—C11—C12126.29 (9)
C10—N1—N2105.90 (9)O3—C11—C12121.50 (9)
C11—N2—N1106.62 (9)C13—C12—C17118.81 (10)
O1—C1—H1A109.5C13—C12—C11117.27 (10)
O1—C1—H1B109.5C17—C12—C11123.89 (9)
H1A—C1—H1B109.5C14—C13—C12121.22 (11)
O1—C1—H1C109.5C14—C13—H13119.4
H1A—C1—H1C109.5C12—C13—H13119.4
H1B—C1—H1C109.5C13—C14—C15119.41 (10)
O1—C2—C3109.09 (10)C13—C14—H14120.3
O1—C2—H2A109.9C15—C14—H14120.3
C3—C2—H2A109.9C14—C15—C16120.79 (10)
O1—C2—H2B109.9C14—C15—H15119.6
C3—C2—H2B109.9C16—C15—H15119.6
H2A—C2—H2B108.3C15—C16—C17120.01 (10)
O2—C3—C2107.21 (9)C15—C16—H16120.0
O2—C3—H3A110.3C17—C16—H16120.0
C2—C3—H3A110.3O4—C17—C16123.53 (10)
O2—C3—H3B110.3O4—C17—C12116.78 (9)
C2—C3—H3B110.3C16—C17—C12119.69 (10)
H3A—C3—H3B108.5O4—C18—C19107.28 (9)
O2—C4—C5123.78 (10)O4—C18—H18A110.3
O2—C4—C9116.32 (9)C19—C18—H18A110.3
C5—C4—C9119.90 (10)O4—C18—H18B110.3
C6—C5—C4119.94 (11)C19—C18—H18B110.3
C6—C5—H5120.0H18A—C18—H18B108.5
C4—C5—H5120.0O5—C19—C18109.63 (9)
C5—C6—C7120.79 (11)O5—C19—H19A109.7
C5—C6—H6119.6C18—C19—H19A109.7
C7—C6—H6119.6O5—C19—H19B109.7
C8—C7—C6119.43 (11)C18—C19—H19B109.7
C8—C7—H7120.3H19A—C19—H19B108.2
C6—C7—H7120.3O5—C20—H20A109.5
C7—C8—C9120.94 (11)O5—C20—H20B109.5
C7—C8—H8119.5H20A—C20—H20B109.5
C9—C8—H8119.5O5—C20—H20C109.5
C8—C9—C4118.89 (10)H20A—C20—H20C109.5
C8—C9—C10118.81 (10)H20B—C20—H20C109.5
C4—C9—C10122.26 (10)
C10—N1—N2—C11−0.40 (12)N1—N2—C11—O31.21 (12)
C1—O1—C2—C3−170.86 (10)N1—N2—C11—C12−177.78 (9)
C4—O2—C3—C2−176.18 (9)C10—O3—C11—N2−1.48 (11)
O1—C2—C3—O276.04 (11)C10—O3—C11—C12177.56 (9)
C3—O2—C4—C5−2.69 (15)N2—C11—C12—C134.11 (16)
C3—O2—C4—C9177.96 (9)O3—C11—C12—C13−174.79 (9)
O2—C4—C5—C6178.67 (10)N2—C11—C12—C17−177.65 (10)
C9—C4—C5—C6−2.00 (17)O3—C11—C12—C173.44 (16)
C4—C5—C6—C7−1.03 (18)C17—C12—C13—C142.55 (16)
C5—C6—C7—C82.46 (18)C11—C12—C13—C14−179.12 (10)
C6—C7—C8—C9−0.83 (18)C12—C13—C14—C15−0.30 (17)
C7—C8—C9—C4−2.15 (17)C13—C14—C15—C16−1.66 (17)
C7—C8—C9—C10175.47 (10)C14—C15—C16—C171.30 (17)
O2—C4—C9—C8−177.06 (9)C18—O4—C17—C161.85 (15)
C5—C4—C9—C83.56 (16)C18—O4—C17—C12−177.53 (9)
O2—C4—C9—C105.40 (15)C15—C16—C17—O4−178.37 (10)
C5—C4—C9—C10−173.98 (10)C15—C16—C17—C120.99 (16)
N2—N1—C10—O3−0.54 (12)C13—C12—C17—O4176.54 (9)
N2—N1—C10—C9174.94 (10)C11—C12—C17—O4−1.68 (15)
C11—O3—C10—N11.22 (11)C13—C12—C17—C16−2.87 (15)
C11—O3—C10—C9−175.03 (9)C11—C12—C17—C16178.92 (9)
C8—C9—C10—N1−165.11 (11)C17—O4—C18—C19175.03 (9)
C4—C9—C10—N112.43 (18)C20—O5—C19—C18177.69 (10)
C8—C9—C10—O310.25 (14)O4—C18—C19—O5−75.52 (11)
C4—C9—C10—O3−172.21 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.385 (2)140

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2184).

References

  • Emi, H. & Toru, K. (2006). Dyes Pigments, 70, 43–47.
  • Liu, Y. Q., Jiang, X. Z., Li, Q. L. & Zhu, D. B. (1997). Synth. Met.71, 1285–1286.
  • Orgzall, I., Franco, O., Reck, G. & Schulz, B. (2005). J. Mol. Struct.749, 144–154.
  • Peng, Z., Bao, H. X., Qi, X. Z., Bing, Y., Min, L. & Guo, Z. (2006). Synth. Met.156, 705–713.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Satoshi, H., Keisuke, E. & Kazuaki, F. (2000). J. Appl. Phys.87, 1968–1973.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, X., Han, J.-R., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2009). Acta Cryst. E65, o1792. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography