PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m860.
Published online 2009 July 1. doi:  10.1107/S1600536809024490
PMCID: PMC2977366

Dichlorido(2,9-dieth­oxy-1,10-phenanthroline-κ2 N,N′)zinc(II)

Abstract

All non-H atoms except for the Cl atoms lie on a mirror plane in the title complex, [ZnCl2(C16H16N2O2)]. The ZnII ion is coordinated by two N atoms from a bis-chelating 2,9-dieth­oxy-1,10-phenanthroline ligand and two symmetry-related Cl atoms in a distorted tetra­hedral environment. The two Zn—N bond lengths are significantly different from each other and the N—Zn—N angle is acute. In the crystal structure, there are weak but significant π–π stacking inter­actions between phenanthroline rings, with a centroid–centroid distance of 3.764 (1) Å.

Related literature

For background information, see: Majumder et al. (2006 [triangle]); Bie et al. (2006 [triangle]). For synthetic details, see: Pijper et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m860-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C16H16N2O2)]
  • M r = 404.58
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m860-efi2.jpg
  • a = 13.255 (3) Å
  • b = 7.4403 (15) Å
  • c = 17.874 (4) Å
  • V = 1762.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.71 mm−1
  • T = 291 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEX-II CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.727, T max = 0.760
  • 5148 measured reflections
  • 1741 independent reflections
  • 1303 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.089
  • S = 1.08
  • 1741 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024490/lh2850sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024490/lh2850Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

The compound 1,10-phenanthroline has been reported as used to synthesize some potential strong luminescent materials with d10 metals. It was predicted that the title compound which is composed of a derivative of 1,10-phenanthroline and a d10 metal would possess strong ligand to ligand or metal perturbed ligand to ligand emissions (Majumder et al., 2006; Bie, et al., 2006). The ligand 2,9-Diethoxy-1,10-phenanthroline as a derivative of 1,10-phenanthroline was synthesized at an earlier time and possesses antimycoplasmal activity in the presence of copper (Pijper, et al., 1984).

The title mononuclear zinc(II) complex is shown in Fig. 1. All non-hydrogen atoms, execpt for the Cl atoms, lie on a mirror plane. The ZnII ion is four coordinated by two nitrogen atoms from the 1,10-phenanthroline ring system (N1 and N2) and two chlorine atoms [Cl1, Cl1i. Symmetry code: (i) x, -y + 1/2, z], defining a disotorted tetrahedral coordination environment. In the crystal structure there are weak but significant π–π stacking interactions between phenanthroline rings (Fig. 2) with a centroid-to-centroid distance of 3.764 (1) Å.

Experimental

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol) and zinc dichloride (0.014 g, 0.1 mmol) in 30 ml me thanol afforded suitable colourless block crystals in about 7 days (yield 60%).

Refinement

Carbon-bound H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms;]. The final difference Fourier map had a highest peak at 1.17 Å from atom Zn1 and a deepest hole at 1.04 Å from atom Zn1.

Figures

Fig. 1.
The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, -y + 1/2, z.]
Fig. 2.
Part of the crystal structure showing a π–π interaction (purple dotted line). All H atoms have been omitted for clarity.

Crystal data

[ZnCl2(C16H16N2O2)]F(000) = 824
Mr = 404.58Dx = 1.524 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 398 reflections
a = 13.255 (3) Åθ = 2–25.1°
b = 7.4403 (15) ŵ = 1.71 mm1
c = 17.874 (4) ÅT = 291 K
V = 1762.7 (6) Å3Prismatic, colorless
Z = 40.20 × 0.18 × 0.17 mm

Data collection

Bruker APEX-II CCD detector diffractometer1741 independent reflections
Radiation source: fine-focus sealed tube1303 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 1.9°
Oscillation frames scansh = −16→0
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −8→8
Tmin = 0.727, Tmax = 0.760l = −21→21
5148 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn1−0.76441 (4)0.25000.40645 (3)0.03224 (18)
Cl1−0.72431 (7)−0.00599 (12)0.35222 (5)0.0513 (3)
O1−0.9753 (2)0.25000.33493 (19)0.0549 (10)
O2−0.5679 (2)0.25000.51182 (18)0.0441 (9)
N1−0.9098 (2)0.25000.4479 (2)0.0326 (9)
N2−0.7355 (2)0.25000.5230 (2)0.0330 (9)
C1−0.9938 (3)0.25000.4084 (3)0.0409 (12)
C2−1.0897 (3)0.25000.4426 (3)0.0464 (14)
H2A−1.14800.25000.41360.056*
C3−1.0957 (4)0.25000.5183 (3)0.0512 (15)
H3A−1.15850.25000.54150.061*
C4−1.0068 (4)0.25000.5625 (3)0.0425 (13)
C5−0.9155 (3)0.25000.5242 (3)0.0325 (11)
C6−0.8217 (3)0.25000.5640 (3)0.0327 (11)
C7−0.8228 (4)0.25000.6423 (3)0.0411 (12)
C8−0.7279 (4)0.25000.6775 (3)0.0530 (14)
H8A−0.72440.25000.72950.064*
C9−0.6412 (4)0.25000.6367 (3)0.0489 (15)
H9A−0.57870.25000.66040.059*
C10−0.6474 (3)0.25000.5576 (3)0.0382 (13)
C11−1.0056 (4)0.25000.6427 (3)0.0576 (16)
H11A−1.06630.25000.66890.069*
C12−0.9174 (4)0.25000.6808 (3)0.0537 (15)
H12A−0.91830.25000.73290.064*
C13−1.0535 (4)0.25000.2795 (3)0.0527 (15)
H13A−1.09560.35610.28430.063*0.50
H13B−1.09560.14390.28430.063*0.50
C14−0.9988 (4)0.25000.2065 (3)0.081 (2)
H14A−1.04680.25000.16630.122*
H14B−0.95720.14460.20320.122*0.50
H14C−0.95720.35540.20320.122*0.50
C15−0.4675 (3)0.25000.5431 (3)0.0578 (17)
H15A−0.45760.14420.57400.069*0.50
H15B−0.45760.35580.57400.069*0.50
C16−0.3943 (4)0.25000.4794 (3)0.0608 (17)
H16A−0.32660.25000.49870.091*
H16B−0.40460.35540.44940.091*0.50
H16C−0.40460.14460.44940.091*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0278 (3)0.0404 (3)0.0285 (3)0.0000.0007 (2)0.000
Cl10.0576 (6)0.0440 (6)0.0523 (6)0.0023 (5)0.0032 (5)−0.0099 (5)
O10.0288 (18)0.102 (3)0.034 (2)0.000−0.0083 (16)0.000
O20.0246 (17)0.070 (3)0.038 (2)0.000−0.0068 (15)0.000
N10.024 (2)0.042 (3)0.031 (2)0.000−0.0012 (17)0.000
N20.030 (2)0.040 (2)0.029 (2)0.000−0.0015 (19)0.000
C10.030 (2)0.045 (3)0.048 (3)0.0000.000 (3)0.000
C20.023 (2)0.064 (4)0.052 (4)0.000−0.006 (2)0.000
C30.030 (3)0.058 (4)0.065 (4)0.0000.013 (3)0.000
C40.036 (3)0.047 (3)0.044 (3)0.0000.009 (2)0.000
C50.030 (2)0.030 (3)0.037 (3)0.0000.008 (2)0.000
C60.034 (3)0.035 (3)0.029 (3)0.0000.005 (2)0.000
C70.052 (3)0.044 (3)0.027 (3)0.0000.002 (2)0.000
C80.062 (4)0.072 (4)0.025 (3)0.000−0.009 (3)0.000
C90.040 (3)0.072 (4)0.034 (3)0.000−0.009 (3)0.000
C100.033 (3)0.049 (4)0.033 (3)0.000−0.006 (2)0.000
C110.048 (3)0.076 (5)0.048 (4)0.0000.025 (3)0.000
C120.054 (3)0.077 (5)0.029 (3)0.0000.008 (3)0.000
C130.038 (3)0.069 (4)0.050 (4)0.000−0.017 (3)0.000
C140.051 (4)0.149 (7)0.044 (4)0.000−0.013 (3)0.000
C150.030 (3)0.096 (5)0.047 (4)0.000−0.011 (3)0.000
C160.034 (3)0.093 (5)0.056 (4)0.000−0.003 (3)0.000

Geometric parameters (Å, °)

Zn1—N12.065 (3)C7—C81.406 (7)
Zn1—N22.118 (4)C7—C121.431 (7)
Zn1—Cl12.2022 (10)C8—C91.362 (7)
Zn1—Cl1i2.2022 (10)C8—H8A0.9300
O1—C11.336 (6)C9—C101.415 (6)
O1—C131.434 (5)C9—H9A0.9300
O2—C101.335 (5)C11—C121.353 (7)
O2—C151.443 (5)C11—H11A0.9300
N1—C11.318 (5)C12—H12A0.9300
N1—C51.366 (6)C13—C141.493 (7)
N2—C101.322 (5)C13—H13A0.9700
N2—C61.358 (5)C13—H13B0.9700
C1—C21.410 (6)C14—H14A0.9600
C2—C31.356 (7)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—C41.418 (7)C15—C161.496 (7)
C3—H3A0.9300C15—H15A0.9700
C4—C51.390 (6)C15—H15B0.9700
C4—C111.434 (7)C16—H16A0.9600
C5—C61.433 (6)C16—H16B0.9600
C6—C71.400 (6)C16—H16C0.9600
N1—Zn1—N279.43 (13)C7—C8—H8A119.5
N1—Zn1—Cl1112.53 (5)C8—C9—C10119.1 (5)
N2—Zn1—Cl1112.90 (4)C8—C9—H9A120.5
N1—Zn1—Cl1i112.53 (5)C10—C9—H9A120.5
N2—Zn1—Cl1i112.90 (4)N2—C10—O2114.2 (4)
Cl1—Zn1—Cl1i119.74 (6)N2—C10—C9121.3 (4)
C1—O1—C13123.1 (4)O2—C10—C9124.5 (4)
C10—O2—C15119.3 (4)C12—C11—C4120.8 (5)
C1—N1—C5119.2 (4)C12—C11—H11A119.6
C1—N1—Zn1126.6 (3)C4—C11—H11A119.6
C5—N1—Zn1114.2 (3)C11—C12—C7121.0 (5)
C10—N2—C6119.4 (4)C11—C12—H12A119.5
C10—N2—Zn1128.4 (3)C7—C12—H12A119.5
C6—N2—Zn1112.3 (3)O1—C13—C14104.6 (4)
N1—C1—O1111.8 (4)O1—C13—H13A110.8
N1—C1—C2122.0 (5)C14—C13—H13A110.8
O1—C1—C2126.3 (4)O1—C13—H13B110.8
C3—C2—C1119.0 (5)C14—C13—H13B110.8
C3—C2—H2A120.5H13A—C13—H13B108.9
C1—C2—H2A120.5C13—C14—H14A109.5
C2—C3—C4120.5 (5)C13—C14—H14B109.5
C2—C3—H3A119.7H14A—C14—H14B109.5
C4—C3—H3A119.7C13—C14—H14C109.5
C5—C4—C3116.6 (5)H14A—C14—H14C109.5
C5—C4—C11118.9 (5)H14B—C14—H14C109.5
C3—C4—C11124.5 (5)O2—C15—C16107.6 (4)
N1—C5—C4122.7 (4)O2—C15—H15A110.2
N1—C5—C6116.6 (4)C16—C15—H15A110.2
C4—C5—C6120.7 (5)O2—C15—H15B110.2
N2—C6—C7123.3 (4)C16—C15—H15B110.2
N2—C6—C5117.5 (4)H15A—C15—H15B108.5
C7—C6—C5119.2 (4)C15—C16—H16A109.5
C6—C7—C8116.0 (4)C15—C16—H16B109.5
C6—C7—C12119.3 (5)H16A—C16—H16B109.5
C8—C7—C12124.6 (5)C15—C16—H16C109.5
C9—C8—C7121.0 (4)H16A—C16—H16C109.5
C9—C8—H8A119.5H16B—C16—H16C109.5
N2—Zn1—N1—C1180.0C10—N2—C6—C70.000 (1)
Cl1—Zn1—N1—C1−69.44 (5)Zn1—N2—C6—C7180.0
Cl1i—Zn1—N1—C169.44 (5)C10—N2—C6—C5180.0
N2—Zn1—N1—C50.0Zn1—N2—C6—C50.0
Cl1—Zn1—N1—C5110.56 (5)N1—C5—C6—N20.0
Cl1i—Zn1—N1—C5−110.56 (5)C4—C5—C6—N2180.0
N1—Zn1—N2—C10180.0N1—C5—C6—C7180.000 (1)
Cl1—Zn1—N2—C1069.87 (5)C4—C5—C6—C70.000 (1)
Cl1i—Zn1—N2—C10−69.87 (5)N2—C6—C7—C80.000 (1)
N1—Zn1—N2—C60.0C5—C6—C7—C8180.000 (1)
Cl1—Zn1—N2—C6−110.13 (5)N2—C6—C7—C12180.000 (1)
Cl1i—Zn1—N2—C6110.13 (5)C5—C6—C7—C120.000 (1)
C5—N1—C1—O1180.0C6—C7—C8—C90.000 (1)
Zn1—N1—C1—O10.0C12—C7—C8—C9180.000 (1)
C5—N1—C1—C20.0C7—C8—C9—C100.000 (1)
Zn1—N1—C1—C2180.0C6—N2—C10—O2180.0
C13—O1—C1—N1180.0Zn1—N2—C10—O20.0
C13—O1—C1—C20.0C6—N2—C10—C90.000 (1)
N1—C1—C2—C30.000 (1)Zn1—N2—C10—C9180.0
O1—C1—C2—C3180.0C15—O2—C10—N2180.0
C1—C2—C3—C40.000 (1)C15—O2—C10—C90.000 (1)
C2—C3—C4—C50.000 (1)C8—C9—C10—N20.000 (1)
C2—C3—C4—C11180.000 (1)C8—C9—C10—O2180.000 (1)
C1—N1—C5—C40.000 (1)C5—C4—C11—C120.000 (1)
Zn1—N1—C5—C4180.0C3—C4—C11—C12180.000 (1)
C1—N1—C5—C6180.0C4—C11—C12—C70.000 (2)
Zn1—N1—C5—C60.0C6—C7—C12—C110.000 (2)
C3—C4—C5—N10.0C8—C7—C12—C11180.000 (1)
C11—C4—C5—N1180.0C1—O1—C13—C14180.0
C3—C4—C5—C6180.0C10—O2—C15—C16180.0
C11—C4—C5—C60.000 (1)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2850).

References

  • Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett.60, 2475–2479.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Majumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.
  • Pijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem 19, 399–404.
  • Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography