PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1971.
Published online 2009 July 25. doi:  10.1107/S1600536809028232
PMCID: PMC2977365

4-(4-Fluoro­phen­oxy)benzoic acid

Abstract

In the title compound, C13H9FO3, the dihedral angle between the two benzene rings is 70.99 (5)°. In the crystal structure, mol­ecules are linked into dimers by centrosymmetric O—H(...)O inter­actions, generating R 2 2(8) ring motifs. These dimers are linked into a two-dimensional array, parallel to the ab plane, by two different C—H(...)O inter­actions. A weak C—H(...)π inter­actions is also present.

Related literature

For general background to and applications of phen­oxy benzoic acid derivatives, see: Forster et al. (1989 [triangle]); Holla et al. (2003 [triangle]); Ramu et al. (2000 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1971-scheme1.jpg

Experimental

Crystal data

  • C13H9FO3
  • M r = 232.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1971-efi1.jpg
  • a = 5.8850 (1) Å
  • b = 7.8526 (2) Å
  • c = 12.0250 (2) Å
  • α = 91.803 (1)°
  • β = 96.321 (1)°
  • γ = 106.027 (1)°
  • V = 529.75 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.38 × 0.22 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.958, T max = 0.984
  • 17124 measured reflections
  • 4049 independent reflections
  • 3329 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.123
  • S = 1.04
  • 4049 reflections
  • 190 parameters
  • All H-atom parameters refined
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028232/tk2506sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028232/tk2506Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research Universiti Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks USM for the award of a USM Fellowship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

Phenoxy benzoic acids and its derivatives are known for their herbicidal and plant growth-regulating activities (Forster et al., 1989). These compounds are also used in the synthesis of various thiadiazoles and oxadiazole derivatives which show excellent anti-bacterial activity (Holla et al., 2003).The title compound, (I), which is used for peripheral neuropathic pain treatment, is a potent blocker of neuronal voltage-gated sodium channels that interacts selectively with inactivated states as opposed to resting states of the channels (Ramu et al., 2000).

In (I), Fig. 1, the two benzene rings are inclined to one another, with dihedral angle of 70.99 (5)°. In the crystal structure (Fig. 2), the molecules are linked into dimers by centrosymmetric O2—H1O2···O3 interactions (Table 1) to generate R22(8) ring motifs. These dimers are linked into a 2-D array, parallel to the ab plane, by intermolecular C—H···O interactions (Table 1). The crystal structure is further stabilized by weak C2—H2A···Cg2 (Table 1) and π···π interactions involving the C1-C6 benzene rings (centroid Cg1) [Cg1···Cg1 = 3.6427 (6)°; symmetry code: 1-x, 2-y, 1-z].

Experimental

4-Bromo-methylbenzoate (0.760 g, 3.57 mmol), sodium carbonate (0.750 g, 7.00 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.400 g, 0.350 mmol) were added to a stirred solution of 4-fluorobenzene boronic acid (0.500 g, 3.57 mmol) in toluene and water (1:1) (20 ml). The reaction mixture was heated at reflux for 8 h; TLC indicated completion of reaction. Sodium hydroxide (0.284 g, 7.00 mmol) was added and stirring was continued for further 1 h. Mass analysis of crude reaction mixture shows the formation of desired compound. The reaction mixture was acidified to pH 3, extracted with ethylacetate and dried. The concentrated residue was purified by column chromatography to yield the pure product, which was recrystallized using hot dichloromethane to yield single crystals. The yield was 0.400 g, 50 %. M.p. 448-450 K.

Refinement

All the H atoms were located from difference Fourier map and allowed to refine freely [range of C—H = 0.959 (15) - 0.981 (15) Å].

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
2-D arrays parallel to the ab plane, viewed along the a axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C13H9FO3Z = 2
Mr = 232.20F(000) = 240
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8850 (1) ÅCell parameters from 7298 reflections
b = 7.8526 (2) Åθ = 2.7–33.2°
c = 12.0250 (2) ŵ = 0.12 mm1
α = 91.803 (1)°T = 100 K
β = 96.321 (1)°Block, colourless
γ = 106.027 (1)°0.38 × 0.22 × 0.14 mm
V = 529.75 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4049 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 33.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→9
Tmin = 0.958, Tmax = 0.984k = −12→12
17124 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.04w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1453P] where P = (Fo2 + 2Fc2)/3
4049 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.72786 (13)0.78346 (9)0.39118 (6)0.02925 (17)
O10.21383 (14)0.80788 (9)0.74196 (6)0.02239 (16)
O2−0.50311 (14)0.22204 (10)0.97542 (7)0.02221 (17)
O3−0.26343 (13)0.05949 (9)0.93084 (6)0.01906 (15)
C10.22933 (18)0.70062 (13)0.55272 (9)0.01978 (19)
C20.36012 (18)0.69543 (13)0.46395 (8)0.02022 (19)
C30.59978 (18)0.78592 (13)0.47858 (8)0.01926 (19)
C40.71427 (18)0.88095 (13)0.57691 (9)0.02004 (19)
C50.58253 (18)0.88423 (13)0.66581 (8)0.01836 (18)
C60.34309 (17)0.79342 (12)0.65322 (8)0.01679 (17)
C70.08790 (17)0.65375 (12)0.78461 (8)0.01647 (17)
C8−0.09821 (18)0.66886 (12)0.84280 (8)0.01712 (18)
C9−0.23330 (17)0.52057 (12)0.88889 (8)0.01649 (17)
C10−0.17956 (16)0.35800 (12)0.87894 (7)0.01449 (16)
C110.01210 (17)0.34637 (12)0.82318 (8)0.01577 (17)
C120.14587 (17)0.49364 (12)0.77501 (8)0.01720 (18)
C13−0.31845 (16)0.20040 (12)0.93050 (7)0.01521 (17)
H1O2−0.578 (4)0.120 (3)1.0074 (18)0.067 (6)*
H1A0.061 (3)0.6429 (19)0.5446 (12)0.027 (4)*
H2A0.287 (3)0.634 (2)0.3911 (13)0.030 (4)*
H4A0.883 (2)0.9437 (18)0.5838 (12)0.023 (3)*
H5A0.653 (3)0.9516 (19)0.7372 (13)0.028 (4)*
H8A−0.134 (3)0.780 (2)0.8501 (12)0.027 (4)*
H9A−0.366 (3)0.5275 (19)0.9281 (12)0.025 (3)*
H11A0.051 (2)0.2356 (18)0.8193 (11)0.020 (3)*
H12A0.279 (3)0.4852 (19)0.7355 (12)0.026 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0317 (4)0.0303 (3)0.0262 (3)0.0042 (3)0.0181 (3)−0.0015 (3)
O10.0293 (4)0.0139 (3)0.0247 (4)0.0022 (3)0.0160 (3)0.0027 (3)
O20.0236 (4)0.0175 (3)0.0295 (4)0.0067 (3)0.0162 (3)0.0065 (3)
O30.0238 (4)0.0146 (3)0.0205 (3)0.0054 (3)0.0091 (3)0.0029 (2)
C10.0177 (4)0.0185 (4)0.0211 (4)0.0009 (3)0.0045 (3)0.0007 (3)
C20.0223 (5)0.0193 (4)0.0176 (4)0.0030 (3)0.0037 (3)0.0002 (3)
C30.0217 (4)0.0183 (4)0.0193 (4)0.0052 (3)0.0099 (3)0.0027 (3)
C40.0163 (4)0.0189 (4)0.0239 (5)0.0025 (3)0.0052 (3)0.0006 (3)
C50.0196 (4)0.0166 (4)0.0179 (4)0.0032 (3)0.0030 (3)0.0008 (3)
C60.0200 (4)0.0132 (4)0.0178 (4)0.0033 (3)0.0079 (3)0.0031 (3)
C70.0186 (4)0.0142 (4)0.0156 (4)0.0015 (3)0.0054 (3)0.0019 (3)
C80.0211 (4)0.0148 (4)0.0172 (4)0.0061 (3)0.0067 (3)0.0028 (3)
C90.0176 (4)0.0171 (4)0.0164 (4)0.0057 (3)0.0061 (3)0.0027 (3)
C100.0159 (4)0.0143 (4)0.0131 (4)0.0033 (3)0.0038 (3)0.0019 (3)
C110.0167 (4)0.0147 (4)0.0161 (4)0.0039 (3)0.0043 (3)0.0012 (3)
C120.0166 (4)0.0166 (4)0.0188 (4)0.0035 (3)0.0066 (3)0.0013 (3)
C130.0169 (4)0.0153 (4)0.0131 (4)0.0032 (3)0.0040 (3)0.0008 (3)

Geometric parameters (Å, °)

F1—C31.3617 (11)C5—C61.3814 (14)
O1—C71.3801 (11)C5—H5A0.980 (15)
O1—C61.3961 (11)C7—C81.3923 (13)
O2—C131.3142 (11)C7—C121.3953 (13)
O2—H1O20.92 (2)C8—C91.3863 (13)
O3—C131.2357 (11)C8—H8A0.959 (15)
C1—C21.3889 (14)C9—C101.4021 (13)
C1—C61.3917 (14)C9—H9A0.967 (14)
C1—H1A0.960 (15)C10—C111.3963 (13)
C2—C31.3817 (14)C10—C131.4783 (13)
C2—H2A0.981 (15)C11—C121.3901 (13)
C3—C41.3786 (14)C11—H11A0.961 (13)
C4—C51.3916 (14)C12—H12A0.978 (15)
C4—H4A0.971 (14)
C7—O1—C6118.23 (7)O1—C7—C12123.17 (9)
C13—O2—H1O2109.9 (13)C8—C7—C12121.23 (8)
C2—C1—C6119.42 (9)C9—C8—C7119.35 (9)
C2—C1—H1A120.5 (9)C9—C8—H8A120.3 (9)
C6—C1—H1A120.1 (9)C7—C8—H8A120.3 (9)
C3—C2—C1118.26 (9)C8—C9—C10120.22 (9)
C3—C2—H2A119.4 (9)C8—C9—H9A120.7 (9)
C1—C2—H2A122.2 (9)C10—C9—H9A119.1 (9)
F1—C3—C4118.50 (9)C11—C10—C9119.70 (8)
F1—C3—C2118.45 (9)C11—C10—C13119.66 (8)
C4—C3—C2123.04 (9)C9—C10—C13120.60 (8)
C3—C4—C5118.37 (9)C12—C11—C10120.43 (8)
C3—C4—H4A120.6 (8)C12—C11—H11A120.5 (8)
C5—C4—H4A121.0 (8)C10—C11—H11A119.1 (8)
C6—C5—C4119.50 (9)C11—C12—C7119.03 (9)
C6—C5—H5A118.4 (9)C11—C12—H12A120.4 (9)
C4—C5—H5A122.1 (9)C7—C12—H12A120.6 (9)
C5—C6—C1121.40 (9)O3—C13—O2123.01 (9)
C5—C6—O1117.85 (9)O3—C13—C10122.01 (8)
C1—C6—O1120.60 (9)O2—C13—C10114.98 (8)
O1—C7—C8115.55 (8)
C6—C1—C2—C3−1.01 (15)O1—C7—C8—C9−179.70 (9)
C1—C2—C3—F1−179.00 (9)C12—C7—C8—C9−2.13 (15)
C1—C2—C3—C4−0.10 (16)C7—C8—C9—C101.33 (14)
F1—C3—C4—C5179.56 (9)C8—C9—C10—C110.55 (14)
C2—C3—C4—C50.66 (16)C8—C9—C10—C13178.31 (9)
C3—C4—C5—C6−0.11 (15)C9—C10—C11—C12−1.68 (14)
C4—C5—C6—C1−1.01 (15)C13—C10—C11—C12−179.47 (8)
C4—C5—C6—O1−176.49 (9)C10—C11—C12—C70.91 (14)
C2—C1—C6—C51.58 (15)O1—C7—C12—C11178.39 (9)
C2—C1—C6—O1176.94 (9)C8—C7—C12—C111.01 (15)
C7—O1—C6—C5−125.60 (10)C11—C10—C13—O33.66 (14)
C7—O1—C6—C158.88 (13)C9—C10—C13—O3−174.10 (9)
C6—O1—C7—C8−158.42 (9)C11—C10—C13—O2−176.33 (8)
C6—O1—C7—C1224.07 (14)C9—C10—C13—O25.90 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O3i0.92 (2)1.70 (2)2.6204 (11)175 (2)
C5—H5A···O3ii0.980 (15)2.403 (15)3.3573 (12)164.3 (14)
C9—H9A···O2iii0.969 (17)2.588 (16)3.3519 (13)135.9 (11)
C2—H2A···Cg2iv0.981 (15)2.928 (16)3.9014 (10)172.1 (13)

Symmetry codes: (i) −x−1, −y, −z+2; (ii) x+1, y+1, z; (iii) −x−1, −y+1, −z+2; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2506).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Forster, H., Eue, L., Schmidt, R. R. & Lurssen, K. (1989). US Patent No. 4 889 946.
  • Holla, B. S., Bhat, K. S. & Shetty, N. S. (2003). Phosphorus Sulfur Silicon Relat. Elem.178, 2193–2199.
  • Ramu, K., Lam, G. N. & Hughes, H. (2000). Drug Metabol. Dispos.28, 1153–1161. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography