PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m994–m995.
Published online 2009 July 25. doi:  10.1107/S1600536809028839
PMCID: PMC2977362

Poly[4-(dimethyl­amino)pyridinium [(μ6-5-carboxy­benzene-1,2,4-tricarboxy­ato-κ6 O 1:O 1′:O 2:O 4:O 4′:O 5)diargentate(I)]]

Abstract

In the title compound, {(C7H11N2)[Ag2(C10H3O8)]}n, the polymeric anion consists of two AgI atoms and a Hbtc3− ligand (H4btc = benzene-1,2,4,5-tetra­carboxylic acid). Each AgI atom is coordinated by four O atoms from three different Hbtc3− ligands. The two AgI atoms are bridged by two bidentate carboxyl­ate groups into an Ag2O4 cyclic unit, with an Ag(...)Ag distance of 2.8189 (3) Å. In this way, the Ag atoms are connected by the Hbtc3− ligands into an extended two-dimensional layer structure. A three-dimensional network is accomplished through O—H(...)O hydrogen bonds between the anionic layers. The cationic guest Hdmap+ [dmap = 4-(dimethyl­amino)pyridine] is trapped in the network and adheres to the layer by an N—H(...)O hydrogen bond.

Related literature

For general background to metal-organic frameworks with 1,2,4,5-benzene­tetra­carboxyl­ate liganda, see: Cao et al. (2002 [triangle]); Hu et al. (2004 [triangle]); Li et al. (2003 [triangle]). For related complexes, see: Chen (2008 [triangle]); Sun et al. (2003 [triangle]); Zheng et al. (2002 [triangle], 2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m994-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)[Ag2(C10H3O8)]
  • M r = 590.04
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m994-efi1.jpg
  • a = 9.7192 (3) Å
  • b = 9.9936 (5) Å
  • c = 10.4968 (3) Å
  • α = 113.304 (4)°
  • β = 97.140 (3)°
  • γ = 103.260 (3)°
  • V = 884.65 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.27 mm−1
  • T = 293 K
  • 0.24 × 0.18 × 0.14 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.611, T max = 0.725
  • 7226 measured reflections
  • 3124 independent reflections
  • 2808 reflections with I > 2σI)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.046
  • S = 1.06
  • 3124 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028839/hy2204sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028839/hy2204Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the NSF of China (grant No. 20771023), the 863 Program (grant No. 2007 A A03z218) and the Analysis and Testing Foundation of Northeast Normal University.

supplementary crystallographic information

Comment

More efforts have been made to construct MOFs (metal organic frameworks) materials by using 1,2,4,5-benzenetetracarboxylic acid (H4btc) as molecular building block, owing to its complexed coordination modes to metal ions and various dimensionalities (Cao et al., 2002; Hu et al., 2004; Li et al., 2003). According to literature, the combination of H4btc, as a polydentate ligand and silver(I) can produce various architectures, involving in [Ag2(pbi)2(H2btc)]n [pbi = 2-(3-pyridyl)-1H-benzimidazole] (Chen, 2008), [Ag(µ3-hmt)]2[Ag(NH3)2]2(btc).3H2O (hmt = hexamethylenetetramine) (Zheng et al., 2002), [Ag83-hmt)24-hmt)2(µ-btc)2(µ-H2O)3].18H2O (Zheng et al., 2003), and [Ag(bipy)][H2btc]0.5.H2O (Sun et al., 2003). Herein, the title complex, [Hdmap][Ag2(Hbtc)] (dmap = 4-dimethylaminopyridine), with a layer structure is reported.

The structure of the title compound contains two crystallographically independent AgI atoms, one (Hbtc)3- ligand and one (Hdmap)+ cantion. Each AgI atom is coordinated by four carboxylate O atoms from three different Hbtc ligands (Fig. 1), with three close bond distances [average Ag1—O = 2.2923 (15) and Ag2—O = 2.2919 (15) Å] and one long bond distance [Ag1—O = 2.7573 (19) and Ag2—O = 2.873 (2) Å] (Table 1). It is worth noting that two adjacent Ag1 and Ag2 atoms are bridged by two bidentate carboxylate groups into an Ag2O4 cyclic unit, with an Ag···Ag distance of 2.8189 (3) Å. The Hbtc ligand connects six Ag atoms, leading to a two-dimensional anionic layer (Fig. 2). The interlayer O—H···O hydrogen bonds hold adjacent layers together to bring out a supramolecular network. The cationic guest (Hdmap)+ is trapped in the network and adhere to the layer by an N—H···O hydrogen bond (Table 2).

Experimental

A mixture of pyromelitic acid anhydride (0.218 g, 0.1 mmol) in distilled water (10 ml) was stirred at 333 K for 1 h until to get clear solution and then a DMF solution (2 ml) of AgNO3 (0.169 g, 0.1 mmol) was added on stirring for 1 h under ambient condition. The resulting solution was allowed to stand in air at room temperature for 3 d. Colorless crystals were collected in 77.8% yield based on AgNO3.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl), N—H = 0.84 and O—H = 0.82 Å, and with Uiso(H) = 1.2(or 1.5 for methyl and hydroxyl)Ueq(C, N, O).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 1 - z; (iii) x, 1 + y, 1 + z; (iv) 1 - x, -y, 2 - z.]
Fig. 2.
A view of the two-dimensional layer in the title compound. H atoms are omitted for clarity.

Crystal data

(C7H11N2)[Ag2(C10H3O8)]Z = 2
Mr = 590.04F(000) = 576
Triclinic, P1Dx = 2.215 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7192 (3) ÅCell parameters from 3901 reflections
b = 9.9936 (5) Åθ = 4.4–25.0°
c = 10.4968 (3) ŵ = 2.27 mm1
α = 113.304 (4)°T = 293 K
β = 97.140 (3)°Block, colorless
γ = 103.260 (3)°0.24 × 0.18 × 0.14 mm
V = 884.65 (7) Å3

Data collection

Oxford Diffraction Gemini R Ultra diffractometer3124 independent reflections
Radiation source: fine-focus sealed tube2808 reflections with I > 2σ(I)
graphiteRint = 0.012
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 4.4°
ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −11→11
Tmin = 0.611, Tmax = 0.725l = −12→12
7226 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.046w = 1/[σ2(Fo2) + (0.0251P)2 + 0.4969P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
3124 reflectionsΔρmax = 0.35 e Å3
265 parametersΔρmin = −0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0157 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.421397 (19)0.410977 (18)0.802682 (17)0.02690 (8)
Ag20.421385 (19)0.385653 (19)1.290598 (17)0.02889 (9)
O10.22857 (16)0.20334 (17)0.81649 (18)0.0277 (4)
O20.10698 (15)−0.04467 (17)0.71974 (19)0.0329 (4)
H20.0364−0.01260.72200.049*
O30.57621 (18)0.37804 (17)1.02125 (17)0.0326 (4)
O40.4252 (2)0.21751 (18)1.07819 (17)0.0344 (4)
O50.41174 (19)−0.39642 (18)0.45762 (18)0.0357 (4)
O60.5636 (2)−0.23946 (18)0.39821 (17)0.0341 (4)
O70.75751 (16)−0.21312 (17)0.65497 (17)0.0251 (3)
O80.87465 (16)0.03113 (17)0.7214 (2)0.0336 (4)
C10.2265 (2)0.0702 (2)0.7685 (2)0.0178 (4)
C20.4977 (2)0.2487 (2)0.9985 (2)0.0173 (4)
C30.4930 (2)0.1181 (2)0.8600 (2)0.0160 (4)
C40.3628 (2)−0.0996 (2)0.6355 (2)0.0177 (4)
H40.2755−0.16170.56840.021*
C50.3627 (2)0.0251 (2)0.7570 (2)0.0160 (4)
C60.6223 (2)−0.0377 (2)0.7128 (2)0.0157 (4)
C70.4913 (2)−0.1332 (2)0.6121 (2)0.0153 (4)
C80.6218 (2)0.0862 (2)0.8348 (2)0.0185 (4)
H80.70930.14930.90120.022*
C90.4888 (2)−0.2673 (2)0.4775 (2)0.0168 (4)
C100.7617 (2)−0.0765 (2)0.6939 (2)0.0192 (4)
N10.0720 (2)0.4030 (2)0.1392 (2)0.0333 (5)
N2−0.1309 (2)0.6318 (3)0.4369 (2)0.0378 (5)
H−0.16830.67770.50210.045*
C110.0048 (2)0.4765 (3)0.2354 (2)0.0271 (5)
C12−0.0362 (3)0.7091 (3)0.3890 (3)0.0354 (6)
H12−0.01720.81440.42400.042*
C13−0.1624 (3)0.4795 (3)0.3866 (3)0.0375 (6)
H13−0.22960.42790.42040.045*
C14−0.0985 (3)0.3988 (3)0.2872 (3)0.0343 (6)
H14−0.12230.29310.25330.041*
C150.0325 (3)0.6369 (3)0.2906 (3)0.0333 (6)
H150.09810.69300.25920.040*
C160.0426 (3)0.2378 (3)0.0780 (3)0.0407 (6)
H16A−0.05400.18830.01720.061*
H16B0.05050.20650.15350.061*
H16C0.11190.20950.02310.061*
C170.1797 (3)0.4867 (4)0.0902 (3)0.0423 (7)
H17A0.25880.55910.17000.063*
H17B0.13510.54000.04730.063*
H17C0.21600.41610.02100.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.03846 (13)0.01606 (11)0.01917 (11)0.00464 (7)0.01347 (8)0.00093 (7)
Ag20.04268 (13)0.01682 (11)0.02185 (11)0.00567 (8)0.01695 (8)0.00245 (8)
O10.0209 (8)0.0163 (8)0.0436 (10)0.0084 (6)0.0142 (7)0.0076 (7)
O20.0123 (7)0.0184 (8)0.0581 (11)0.0053 (6)0.0090 (7)0.0065 (8)
O30.0409 (10)0.0154 (8)0.0288 (9)0.0006 (7)0.0191 (7)−0.0016 (7)
O40.0535 (11)0.0211 (8)0.0240 (8)0.0075 (7)0.0231 (8)0.0037 (7)
O50.0431 (10)0.0148 (8)0.0356 (9)−0.0001 (7)0.0255 (8)−0.0019 (7)
O60.0553 (11)0.0201 (8)0.0233 (8)0.0081 (7)0.0245 (8)0.0034 (7)
O70.0233 (8)0.0173 (8)0.0361 (9)0.0103 (6)0.0155 (7)0.0084 (7)
O80.0143 (8)0.0191 (8)0.0614 (12)0.0046 (6)0.0133 (7)0.0108 (8)
C10.0168 (10)0.0168 (11)0.0191 (10)0.0056 (8)0.0084 (8)0.0058 (9)
C20.0181 (10)0.0166 (10)0.0149 (9)0.0087 (8)0.0047 (8)0.0027 (8)
C30.0185 (10)0.0132 (10)0.0154 (10)0.0056 (8)0.0061 (8)0.0045 (8)
C40.0146 (10)0.0155 (10)0.0173 (10)0.0036 (8)0.0026 (8)0.0026 (8)
C50.0151 (10)0.0132 (10)0.0199 (10)0.0049 (7)0.0079 (8)0.0061 (8)
C60.0144 (10)0.0132 (10)0.0185 (10)0.0047 (7)0.0067 (8)0.0050 (8)
C70.0173 (10)0.0130 (9)0.0160 (9)0.0063 (8)0.0073 (8)0.0049 (8)
C80.0155 (10)0.0143 (10)0.0187 (10)0.0028 (8)0.0031 (8)0.0016 (8)
C90.0168 (10)0.0164 (10)0.0150 (10)0.0071 (8)0.0035 (8)0.0036 (8)
C100.0181 (10)0.0173 (11)0.0199 (10)0.0063 (8)0.0074 (8)0.0045 (9)
N10.0372 (11)0.0354 (11)0.0322 (11)0.0154 (9)0.0194 (9)0.0141 (9)
N20.0413 (12)0.0458 (13)0.0318 (11)0.0272 (10)0.0174 (10)0.0123 (10)
C110.0270 (12)0.0322 (13)0.0235 (11)0.0108 (10)0.0076 (9)0.0122 (10)
C120.0420 (14)0.0289 (13)0.0338 (13)0.0143 (11)0.0061 (11)0.0113 (11)
C130.0364 (14)0.0422 (15)0.0414 (14)0.0136 (11)0.0216 (12)0.0213 (13)
C140.0383 (14)0.0280 (13)0.0401 (14)0.0111 (11)0.0188 (12)0.0150 (12)
C150.0369 (13)0.0308 (13)0.0344 (13)0.0097 (10)0.0128 (11)0.0156 (11)
C160.0437 (15)0.0410 (16)0.0369 (14)0.0218 (12)0.0152 (12)0.0102 (13)
C170.0371 (14)0.0576 (18)0.0399 (15)0.0176 (13)0.0225 (12)0.0236 (14)

Geometric parameters (Å, °)

Ag1—O12.5220 (15)C6—C81.387 (3)
Ag1—O3i2.1784 (15)C6—C71.400 (3)
Ag1—O32.7573 (19)C6—C101.507 (3)
Ag1—O6ii2.1765 (15)C7—C91.507 (3)
Ag2—O42.2091 (15)C8—H80.9300
Ag2—O5iii2.2224 (16)N1—C111.336 (3)
Ag2—O5iv2.873 (2)N1—C161.455 (3)
Ag2—O7iv2.4442 (15)N1—C171.460 (3)
Ag1—Ag2i2.8189 (3)N2—C121.339 (3)
O1—C11.216 (3)N2—C131.341 (3)
O2—C11.306 (2)N2—H0.84
O2—H20.82C11—C151.417 (3)
O3—C21.252 (3)C11—C141.420 (3)
O4—C21.244 (3)C12—C151.355 (3)
O5—C91.255 (3)C12—H120.9300
O6—C91.240 (3)C13—C141.361 (3)
O7—C101.249 (3)C13—H130.9300
O8—C101.257 (2)C14—H140.9300
C1—C51.496 (3)C15—H150.9300
C2—C31.508 (3)C16—H16A0.9600
C3—C81.392 (3)C16—H16B0.9600
C3—C51.401 (3)C16—H16C0.9600
C4—C51.387 (3)C17—H17A0.9600
C4—C71.392 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
O6ii—Ag1—O3i165.22 (6)C4—C7—C6118.95 (18)
O6ii—Ag1—O188.08 (6)C4—C7—C9120.01 (17)
O3i—Ag1—O1104.84 (6)C6—C7—C9120.99 (17)
O6ii—Ag1—Ag2i82.64 (4)C6—C8—C3121.33 (18)
O3i—Ag1—Ag2i83.04 (4)C6—C8—H8119.3
O1—Ag1—Ag2i162.98 (4)C3—C8—H8119.3
O3—Ag1—O180.23 (5)O6—C9—O5126.56 (19)
O3—Ag1—O3i82.06 (6)O6—C9—C7117.07 (18)
O3—Ag1—O6ii107.63 (5)O5—C9—C7116.36 (17)
O3—Ag1—Ag2i116.16 (4)O7—C10—O8124.57 (19)
O4—Ag2—O5iii158.69 (7)O7—C10—C6117.63 (17)
O4—Ag2—O7iv97.68 (6)O8—C10—C6117.78 (18)
O5iii—Ag2—O7iv97.08 (5)C11—N1—C16122.5 (2)
O4—Ag2—Ag1i81.08 (4)C11—N1—C17120.8 (2)
O5iii—Ag2—Ag1i81.40 (4)C16—N1—C17116.8 (2)
O7iv—Ag2—Ag1i168.58 (4)C12—N2—C13120.7 (2)
O5iv—Ag2—O4119.23 (5)C12—N2—H120.9
O5iv—Ag2—O5iii78.86 (6)C13—N2—H118.3
O5iv—Ag2—O7iv78.31 (5)N1—C11—C15121.4 (2)
O5iv—Ag2—Ag1i112.29 (4)N1—C11—C14122.1 (2)
C1—O1—Ag1123.41 (13)C15—C11—C14116.4 (2)
C1—O2—H2109.5N2—C12—C15121.3 (2)
C2—O3—Ag1i123.07 (13)N2—C12—H12119.3
C2—O4—Ag2124.47 (14)C15—C12—H12119.3
C9—O5—Ag2v123.12 (13)N2—C13—C14121.5 (2)
C9—O6—Ag1ii124.62 (14)N2—C13—H13119.3
C10—O7—Ag2iv121.06 (12)C14—C13—H13119.3
O1—C1—O2123.50 (18)C13—C14—C11119.7 (2)
O1—C1—C5122.02 (17)C13—C14—H14120.1
O2—C1—C5114.46 (17)C11—C14—H14120.1
O4—C2—O3126.86 (19)C12—C15—C11120.3 (2)
O4—C2—C3117.34 (18)C12—C15—H15119.8
O3—C2—C3115.79 (17)C11—C15—H15119.8
C8—C3—C5118.74 (18)N1—C16—H16A109.5
C8—C3—C2119.06 (17)N1—C16—H16B109.5
C5—C3—C2122.18 (17)H16A—C16—H16B109.5
C5—C4—C7121.14 (18)N1—C16—H16C109.5
C5—C4—H4119.4H16A—C16—H16C109.5
C7—C4—H4119.4H16B—C16—H16C109.5
C4—C5—C3119.97 (18)N1—C17—H17A109.5
C4—C5—C1119.38 (17)N1—C17—H17B109.5
C3—C5—C1120.24 (17)H17A—C17—H17B109.5
C8—C6—C7119.81 (18)N1—C17—H17C109.5
C8—C6—C10120.10 (17)H17A—C17—H17C109.5
C7—C6—C10119.93 (17)H17B—C17—H17C109.5
O6ii—Ag1—O1—C131.61 (18)C10—C6—C7—C9−5.6 (3)
O3i—Ag1—O1—C1−155.65 (17)C7—C6—C8—C30.1 (3)
Ag2i—Ag1—O1—C188.4 (2)C10—C6—C8—C3−175.26 (19)
O5iii—Ag2—O4—C243.7 (3)C5—C3—C8—C6−2.1 (3)
O7iv—Ag2—O4—C2177.18 (18)C2—C3—C8—C6176.43 (19)
Ag1i—Ag2—O4—C28.66 (17)Ag1ii—O6—C9—O51.1 (3)
Ag1—O1—C1—O2−150.04 (16)Ag1ii—O6—C9—C7−179.62 (13)
Ag1—O1—C1—C528.3 (3)Ag2v—O5—C9—O611.0 (3)
Ag2—O4—C2—O3−2.3 (3)Ag2v—O5—C9—C7−168.32 (13)
Ag2—O4—C2—C3177.08 (13)C4—C7—C9—O6120.2 (2)
Ag1i—O3—C2—O4−9.4 (3)C6—C7—C9—O6−57.5 (3)
Ag1i—O3—C2—C3171.21 (13)C4—C7—C9—O5−60.4 (3)
O4—C2—C3—C8−119.5 (2)C6—C7—C9—O5121.9 (2)
O3—C2—C3—C860.0 (3)Ag2iv—O7—C10—O8151.16 (17)
O4—C2—C3—C559.0 (3)Ag2iv—O7—C10—C6−27.2 (2)
O3—C2—C3—C5−121.6 (2)C8—C6—C10—O7132.8 (2)
C7—C4—C5—C3−1.1 (3)C7—C6—C10—O7−42.6 (3)
C7—C4—C5—C1171.50 (18)C8—C6—C10—O8−45.6 (3)
C8—C3—C5—C42.6 (3)C7—C6—C10—O8139.0 (2)
C2—C3—C5—C4−175.89 (19)C16—N1—C11—C15−178.3 (2)
C8—C3—C5—C1−170.00 (18)C17—N1—C11—C151.6 (3)
C2—C3—C5—C111.5 (3)C16—N1—C11—C141.2 (4)
O1—C1—C5—C4−138.5 (2)C17—N1—C11—C14−178.8 (2)
O2—C1—C5—C439.9 (3)C13—N2—C12—C15−1.2 (4)
O1—C1—C5—C334.1 (3)C12—N2—C13—C140.9 (4)
O2—C1—C5—C3−147.48 (19)N2—C13—C14—C110.3 (4)
C5—C4—C7—C6−0.8 (3)N1—C11—C14—C13179.2 (2)
C5—C4—C7—C9−178.56 (19)C15—C11—C14—C13−1.2 (3)
C8—C6—C7—C41.3 (3)N2—C12—C15—C110.2 (4)
C10—C6—C7—C4176.73 (18)N1—C11—C15—C12−179.5 (2)
C8—C6—C7—C9179.04 (19)C14—C11—C15—C120.9 (3)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+1; (iii) x, y+1, z+1; (iv) −x+1, −y, −z+2; (v) x, y−1, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H···O7vi0.841.882.720 (2)177
O2—H2···O8vii0.821.732.541 (2)173

Symmetry codes: (vi) x−1, y+1, z; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2204).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem.41, 2087–2094. [PubMed]
  • Chen, J. (2008). Acta Cryst. E64, m498–m499. [PMC free article] [PubMed]
  • Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112–m113. [PubMed]
  • Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem.42, 3119–3124. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, D. F., Cao, R., Sun, Y. Q., Bi, W. H., Li, X. J., Wang, Y. Q., Shi, Q. & Li, X. (2003). Inorg. Chem.42, 7512–7518. [PubMed]
  • Zheng, S. L., Tong, M. L., Chen, X. M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.
  • Zheng, S. L., Zhang, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem.172, 45–52.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography