PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m853.
Published online 2009 July 1. doi:  10.1107/S1600536809024337
PMCID: PMC2977361

Triaqua­dichlorido[5-(4-pyridinio)tetra­zolato-κN 2]cobalt(II) monohydrate

Abstract

The title compound, [CoCl2(C6H5N5)(H2O)3]·H2O, was synthesized by hydro­thermal reaction of CoCl2 with 4-(2H-tetra­zol-5-yl)pyridine. The CoII cation is coordinated by two Cl ions, one N atom from the 5-(4-pyridinio)tetra­zolate zwitterion and three O atoms from three water mol­ecules in a distorted octa­hedral geometry. In the crystal, mol­ecules are linked into a three-dimensional network by N—H(...)Cl hydrogen bonds and O—H(...)O/N/Cl hydrogen bonds involv­ing both coordinated and uncoordinated water mol­ecules. Strong π–π stacking is present between parallel pyridinium and tetra­zolate rings [centroid–centroid distances = 3.411 (2) and 3.436 (2) Å].

Related literature

For general background to the chemistry of tetra­zole derivatives, see: Fu et al. (2007 [triangle], 2008 [triangle]); Huang et al. (1999 [triangle]); Liu et al. (1999 [triangle]); Wang et al. (2005 [triangle]). For the crystal structures of related compounds, see: Dai & Fu (2008 [triangle]); Wen (2008 [triangle]); Wittenberger & Donner (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m853-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C6H5N5)(H2O)3]·H2O
  • M r = 349.04
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m853-efi1.jpg
  • a = 6.4900 (13) Å
  • b = 9.842 (2) Å
  • c = 11.159 (2) Å
  • α = 110.72 (3)°
  • β = 97.05 (3)°
  • γ = 106.27 (3)°
  • V = 620.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.83 mm−1
  • T = 298 K
  • 0.15 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.762, T max = 0.841
  • 6551 measured reflections
  • 2842 independent reflections
  • 2619 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.080
  • S = 1.18
  • 2842 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024337/ci2831sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024337/ci2831Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The tetrazole functional group has found a wide range of applications in coordination chemistry as a ligand, in medicinal chemistry as a metabolically stable surrogate for the carboxylic acid group, and in materials science as a high density energy materials, dielectric and luminescence materials (Wang et al., 2005; Fu et al., 2008; Fu et al., 2007; Huang et al., 1999; Liu et al., 1999; Wittenberger et al.,1993). We report here the crystal structure of the title compound, triaqua-dichloro-[4-(2H-tetrazol)pyridinum]cobalt(II) monohydrate.

The CoII cation is coordinated by two Cl- ions, one N atom from the pyridinio-4-(2H-tetrazolate) zwitterion and three O atoms from three water molecules in a distorted octahedral geometry. The pyridine N atom of the organic ligand is protonated. The pyridinium and tetrazolate rings are almost coplanar, with a dihedral angle of 3.7 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Wittenberger et al., 1993; Dai & Fu 2008; Wen 2008).

The molecules are linked into a three-dimensional network by intermolecular O—H···O, O—H···N, N—H···Cl and O—H···Cl hydrogen bonds (Table 1 and Fig.2).

Experimental

A mixture of 4-(2H-tetrazol-5-yl)pyridine (0.2 mmol), CoCl2 (0.4 mmol), distilled water (1 ml) and a few drops of HCl (6 mol/L) was sealed in a glass tube and maintained at 333 K. Pink block-shaped crystals suitable for X-ray analysis were obtained after 3 d.

Refinement

H atoms of water molecules were located in difference Fourier maps and in the final stages of refinement they were treated as riding on the parent O atom with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing the three dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.

Crystal data

[CoCl2(C6H5N5)(H2O)3]·H2OZ = 2
Mr = 349.04F(000) = 354
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4900 (13) ÅCell parameters from 2619 reflections
b = 9.842 (2) Åθ = 3.4–27.5°
c = 11.159 (2) ŵ = 1.83 mm1
α = 110.72 (3)°T = 298 K
β = 97.05 (3)°Block, pink
γ = 106.27 (3)°0.15 × 0.15 × 0.10 mm
V = 620.1 (3) Å3

Data collection

Rigaku Mercury2 diffractometer2842 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD profile fitting scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.762, Tmax = 0.841l = −14→14
6551 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0344P)2 + 0.391P] where P = (Fo2 + 2Fc2)/3
2842 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N50.6736 (3)0.84317 (19)0.28889 (17)0.0224 (4)
C60.6810 (3)0.8500 (2)0.41148 (19)0.0188 (4)
N10.8708 (3)1.2651 (2)0.74897 (19)0.0281 (4)
H1A0.90981.35030.81830.034*
N20.6143 (3)0.70917 (18)0.41274 (16)0.0192 (3)
N40.5984 (3)0.69178 (19)0.21085 (16)0.0224 (4)
C30.7487 (3)0.9955 (2)0.52968 (19)0.0183 (4)
C50.8008 (4)1.1310 (3)0.7624 (2)0.0301 (5)
H50.79521.13080.84520.036*
N30.5635 (3)0.61292 (18)0.28545 (16)0.0197 (3)
C20.8224 (3)1.1378 (2)0.5204 (2)0.0243 (4)
H20.83091.14190.43910.029*
C40.7372 (4)0.9933 (2)0.6525 (2)0.0253 (4)
H40.68680.89940.66050.030*
C10.8826 (4)1.2725 (2)0.6330 (2)0.0282 (5)
H10.93121.36820.62800.034*
Co1A0.41776 (4)0.36866 (3)0.20745 (2)0.01763 (9)
Cl20.08900 (9)0.38823 (6)0.08079 (5)0.02643 (13)
Cl10.73776 (8)0.35040 (6)0.33499 (5)0.02677 (13)
O1W0.5652 (3)0.33958 (19)0.04986 (14)0.0285 (3)
H1WA0.71730.35700.06560.043*
H1WB0.52540.3583−0.01970.043*
O2W0.2585 (3)0.37067 (19)0.35990 (15)0.0296 (3)
H2WA0.30370.38090.43620.044*
H2WB0.12660.38670.35660.044*
O3W0.2553 (3)0.12646 (16)0.12299 (15)0.0266 (3)
H3WA0.10360.09730.12310.040*
H3WB0.24620.08570.04000.040*
O4W0.1925 (3)0.96192 (19)0.85528 (16)0.0363 (4)
H4WA0.23061.01070.80930.054*
H4WB0.22830.88030.81400.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N50.0273 (9)0.0172 (8)0.0214 (8)0.0062 (7)0.0062 (7)0.0075 (7)
C60.0169 (9)0.0168 (9)0.0209 (9)0.0050 (7)0.0041 (7)0.0066 (7)
N10.0271 (9)0.0175 (8)0.0273 (9)0.0062 (7)0.0015 (7)−0.0020 (7)
N20.0221 (8)0.0155 (7)0.0161 (8)0.0052 (6)0.0026 (6)0.0040 (6)
N40.0280 (9)0.0182 (8)0.0191 (8)0.0063 (7)0.0049 (7)0.0071 (7)
C30.0140 (8)0.0161 (9)0.0216 (9)0.0056 (7)0.0001 (7)0.0053 (7)
C50.0356 (12)0.0251 (11)0.0225 (10)0.0083 (9)0.0043 (9)0.0045 (9)
N30.0235 (8)0.0161 (8)0.0173 (8)0.0058 (7)0.0045 (7)0.0054 (6)
C20.0254 (10)0.0200 (10)0.0282 (11)0.0077 (8)0.0066 (8)0.0107 (8)
C40.0319 (11)0.0189 (9)0.0231 (10)0.0082 (8)0.0042 (8)0.0075 (8)
C10.0247 (10)0.0163 (9)0.0405 (13)0.0064 (8)0.0065 (9)0.0093 (9)
Co1A0.02082 (15)0.01475 (14)0.01550 (15)0.00521 (11)0.00386 (11)0.00507 (11)
Cl20.0265 (3)0.0249 (3)0.0237 (3)0.0102 (2)−0.0001 (2)0.0064 (2)
Cl10.0260 (3)0.0286 (3)0.0274 (3)0.0105 (2)0.0033 (2)0.0135 (2)
O1W0.0259 (8)0.0419 (9)0.0191 (7)0.0127 (7)0.0067 (6)0.0131 (7)
O2W0.0331 (9)0.0381 (9)0.0230 (8)0.0158 (7)0.0124 (7)0.0140 (7)
O3W0.0318 (8)0.0187 (7)0.0218 (7)0.0030 (6)0.0043 (6)0.0050 (6)
O4W0.0518 (11)0.0262 (8)0.0300 (9)0.0106 (8)0.0174 (8)0.0104 (7)

Geometric parameters (Å, °)

N5—N41.337 (2)C4—H40.93
N5—C61.340 (3)C1—H10.93
C6—N21.337 (2)Co1A—O1W2.0738 (16)
C6—C31.467 (3)Co1A—O2W2.0933 (16)
N1—C11.332 (3)Co1A—O3W2.1071 (17)
N1—C51.339 (3)Co1A—Cl12.4568 (9)
N1—H1A0.86Co1A—Cl22.5041 (9)
N2—N31.335 (2)O1W—H1WA0.94
N4—N31.323 (2)O1W—H1WB0.88
C3—C41.389 (3)O2W—H2WA0.83
C3—C21.393 (3)O2W—H2WB0.91
C5—C41.377 (3)O3W—H3WA0.94
C5—H50.93O3W—H3WB0.86
N3—Co1A2.1153 (18)O4W—H4WA0.83
C2—C11.379 (3)O4W—H4WB0.88
C2—H20.93
N4—N5—C6104.78 (16)C2—C1—H1120.1
N2—C6—N5112.14 (17)O1W—Co1A—O2W173.47 (6)
N2—C6—C3124.23 (18)O1W—Co1A—O3W87.50 (7)
N5—C6—C3123.61 (17)O2W—Co1A—O3W86.15 (7)
C1—N1—C5122.93 (19)O1W—Co1A—N392.57 (7)
C1—N1—H1A118.5O2W—Co1A—N393.86 (7)
C5—N1—H1A118.5O3W—Co1A—N3176.39 (6)
N3—N2—C6103.82 (16)O1W—Co1A—Cl189.28 (5)
N3—N4—N5108.68 (16)O2W—Co1A—Cl189.42 (5)
C4—C3—C2118.98 (19)O3W—Co1A—Cl192.27 (6)
C4—C3—C6120.36 (18)N3—Co1A—Cl191.34 (6)
C2—C3—C6120.65 (19)O1W—Co1A—Cl291.67 (5)
N1—C5—C4119.4 (2)O2W—Co1A—Cl289.64 (5)
N1—C5—H5120.3O3W—Co1A—Cl287.85 (6)
C4—C5—H5120.3N3—Co1A—Cl288.54 (6)
N4—N3—N2110.58 (15)Cl1—Co1A—Cl2179.04 (2)
N4—N3—Co1A123.34 (12)Co1A—O1W—H1WA118.8
N2—N3—Co1A125.83 (13)Co1A—O1W—H1WB125.5
C1—C2—C3119.3 (2)H1WA—O1W—H1WB108.6
C1—C2—H2120.4Co1A—O2W—H2WA131.9
C3—C2—H2120.4Co1A—O2W—H2WB120.0
C5—C4—C3119.6 (2)H2WA—O2W—H2WB106.3
C5—C4—H4120.2Co1A—O3W—H3WA112.7
C3—C4—H4120.2Co1A—O3W—H3WB112.6
N1—C1—C2119.8 (2)H3WA—O3W—H3WB100.6
N1—C1—H1120.1H4WA—O4W—H4WB98.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O4Wi0.951.922.858 (3)173
O3W—H3WB···O4Wii0.861.912.761 (2)170
O1W—H1WB···N4iii0.882.012.848 (2)157
O2W—H2WA···N2iv0.832.242.999 (2)153
O4W—H4WA···N5v0.832.112.935 (3)173
N1—H1A···Cl2v0.862.413.180 (2)149
O1W—H1WA···Cl2vi0.942.323.254 (2)174
O2W—H2WB···Cl1vii0.912.423.300 (2)163
O4W—H4WB···Cl1iv0.882.383.249 (2)168

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2831).

References

  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [PMC free article] [PubMed]
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.
  • Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun.2, 31–34.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Wen, X.-C. (2008). Acta Cryst. E64, m768. [PMC free article] [PubMed]
  • Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem.58, 4139–4141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography