PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m974.
Published online 2009 July 22. doi:  10.1107/S1600536809028384
PMCID: PMC2977357

Bis(μ2-3,5-diisopropyl-4H-1,2,4-triazole-κ2 N 1:N 2)bis­[(nitrato-κO)silver(I)]

Abstract

The neutral N-heterocycle in the title centrosymmetric dinuclear compound, [Ag2(NO3)2(C8H15N3)2], bridges two metal atoms through its imino N atoms. The N—Ag—N skeleton is bent [N—Ag—N = 127.2 (3)°]; as one of two O atoms of the nitrate anion is nearly coplanar with this N—Ag—N skeleton [Ag—O = 2.63 (1) Å], the coordination geometry around the AgI atom is regarded as trigonal-planar. One of the two isopropyl groups is disordered over two positions in respect of the methyl groups in a 1:1 ratio. In the crystal structure, inter­molecular N—H(...)O hydrogen bonding is observed between the nitrate groups and triazole ligands.

Related literature

For the background to such silver–triazole compounds, see: Yang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m974-scheme1.jpg

Experimental

Crystal data

  • [Ag2(NO3)2(C8H15N3)2]
  • M r = 646.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m974-efi1.jpg
  • a = 5.791 (1) Å
  • b = 14.541 (1) Å
  • c = 14.578 (1) Å
  • β = 99.523 (2)°
  • V = 1210.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.66 mm−1
  • T = 293 K
  • 0.41 × 0.17 × 0.13 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.670, T max = 1.000 (expected range = 0.540–0.805)
  • 5562 measured reflections
  • 2124 independent reflections
  • 1389 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.240
  • S = 1.08
  • 2124 reflections
  • 151 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.96 e Å−3

Data collection: APEX2 (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028384/xu2560sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028384/xu2560Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Education Department of Zhengzhou University, China and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

An acetonitrile solution (2 ml) of 3,5-diisopropyl-1H-1,2,4-triazole (0.1 mmol, 15 mg) was mixed with a acetoninitrile solution (1 ml) of silver nitrate (0.1 mmol, 17 mg). Ether was allowed to diffuse into the resulting solution. Colorless crystals were formed after a week in 50% yield. Calc. for C16H30N8Ag2O6: C 29.7; H 4.6, N, 17.3%. Found: C 29.7, H 4.7, N, 17.6%.

Refinement

The H atoms were placed in calculated positions [C—H 0.96–0.98 Å; U(H) = 1.2–1.5Ueq(C)]. The amino H-atom was similarly treated [N–H 0.89 Å].

One of the two isopropyl groups is disordered over two positions in the methyl groups only; the disorder was assumed to be 1:1. The C–C distances were restrained to 1.54±0.01 Å, and the 1,3-related C···C distances to 2.51±0.01 Å. The temperature factors of the primed atoms were restrained to those of the unprimed ones; the anisotropic temperature factors were restrained to be nearly isotropic.

Figures

Fig. 1.
Thermal ellipsoid plot of [Ag(C8H15N3)(NO3)]2; ellipsoids are drawn at the 50% probability level. The disorder is not shown.

Crystal data

[Ag2(NO3)2(C8H15N3)2]F(000) = 648
Mr = 646.22Dx = 1.773 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1859 reflections
a = 5.791 (1) Åθ = 2.8–21.8°
b = 14.541 (1) ŵ = 1.66 mm1
c = 14.578 (1) ÅT = 293 K
β = 99.523 (2)°Prism, colorless
V = 1210.6 (2) Å30.41 × 0.17 × 0.13 mm
Z = 2

Data collection

Bruker SMART diffractometer2124 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.670, Tmax = 1.000k = −9→17
5562 measured reflectionsl = −17→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.1131P)2 + 8.3674P] where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.91 e Å3
18 restraintsΔρmin = −0.96 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.6205 (2)0.57863 (7)0.43648 (7)0.0682 (5)
O10.8666 (17)0.6779 (7)0.3367 (8)0.080 (3)
O21.0702 (19)0.5875 (8)0.4336 (8)0.094 (4)
O31.2426 (18)0.6792 (9)0.3497 (8)0.096 (4)
N10.5362 (17)0.4427 (6)0.3705 (6)0.047 (2)
N20.4403 (17)0.3760 (7)0.4232 (7)0.054 (3)
N30.5156 (19)0.3113 (7)0.2993 (8)0.061 (3)
H30.52700.26810.25700.074*
N41.061 (2)0.6493 (8)0.3760 (8)0.067 (3)
C10.547 (3)0.4325 (13)0.1257 (10)0.087 (5)
H1A0.38910.45230.12630.130*
H1B0.54730.36860.10930.130*
H1C0.61330.46800.08090.130*
C20.692 (2)0.4463 (9)0.2217 (9)0.058 (3)
H20.69330.51260.23390.070*
C30.946 (3)0.4169 (15)0.2284 (14)0.104 (6)
H3A1.02730.42740.29040.155*
H3B1.01890.45200.18520.155*
H3C0.95290.35270.21370.155*
C40.5824 (19)0.4017 (7)0.2966 (8)0.044 (3)
C50.429 (2)0.3010 (8)0.3788 (9)0.055 (3)
C60.342 (2)0.2139 (8)0.4109 (12)0.085 (5)
H60.32620.22330.47610.102*0.50
H6'0.34600.18100.35250.102*0.50
C70.097 (3)0.192 (2)0.359 (2)0.087 (8)0.50
H7A0.04480.13470.38050.131*0.50
H7B0.10060.18820.29340.131*0.50
H7C−0.00920.24010.37000.131*0.50
C80.503 (4)0.1308 (18)0.409 (3)0.089 (7)0.50
H8A0.43060.07740.43080.134*0.50
H8B0.64960.14230.44900.134*0.50
H8C0.53000.12050.34680.134*0.50
C7'0.083 (2)0.203 (2)0.408 (2)0.087 (8)0.50
H7'10.05100.14250.42970.131*0.50
H7'20.00380.20970.34460.131*0.50
H7'30.02730.24840.44610.131*0.50
C8'0.490 (4)0.144 (2)0.471 (2)0.089 (7)0.50
H8'10.39380.09280.48200.134*0.50
H8'20.55480.17200.52920.134*0.50
H8'30.61380.12360.43990.134*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0868 (9)0.0610 (7)0.0623 (7)−0.0294 (6)0.0285 (5)−0.0052 (5)
O10.051 (6)0.080 (7)0.107 (8)0.001 (5)0.007 (5)0.031 (6)
O20.078 (7)0.108 (9)0.091 (7)−0.021 (6)0.003 (6)0.066 (7)
O30.064 (6)0.119 (9)0.104 (8)−0.015 (6)0.016 (6)0.057 (7)
N10.063 (6)0.039 (5)0.039 (5)−0.016 (4)0.009 (4)0.003 (4)
N20.054 (6)0.052 (6)0.055 (6)−0.018 (5)0.009 (5)0.007 (5)
N30.066 (7)0.050 (6)0.067 (7)0.004 (5)0.008 (6)−0.009 (5)
N40.056 (7)0.075 (8)0.070 (7)−0.001 (6)0.016 (6)0.018 (6)
C10.083 (10)0.123 (14)0.055 (8)−0.004 (10)0.013 (7)0.012 (9)
C20.059 (8)0.059 (8)0.055 (7)0.004 (6)0.008 (6)0.001 (6)
C30.056 (9)0.146 (18)0.112 (14)0.007 (10)0.027 (9)0.040 (13)
C40.038 (6)0.044 (6)0.048 (6)0.002 (4)0.004 (5)−0.001 (5)
C50.050 (7)0.043 (7)0.071 (8)−0.010 (5)0.005 (6)0.001 (6)
C60.077 (10)0.044 (7)0.131 (14)−0.003 (7)0.011 (9)0.021 (9)
C70.080 (9)0.093 (10)0.090 (12)−0.017 (8)0.020 (8)0.011 (9)
C80.083 (10)0.087 (10)0.098 (12)0.002 (8)0.016 (9)0.014 (9)
C7'0.080 (9)0.093 (10)0.090 (12)−0.017 (8)0.020 (8)0.011 (9)
C8'0.083 (10)0.087 (10)0.098 (12)0.002 (8)0.016 (9)0.014 (9)

Geometric parameters (Å, °)

Ag1—N12.218 (9)C3—H3B0.9600
Ag1—N2i2.232 (10)C3—H3C0.9600
Ag1—O22.615 (11)C5—C61.469 (16)
Ag1—O12.630 (10)C6—C7'1.505 (10)
O1—N41.245 (14)C6—C8'1.508 (10)
O2—N41.224 (14)C6—C71.529 (10)
O3—N41.258 (14)C6—C81.529 (10)
N1—C41.297 (14)C6—H60.9800
N1—N21.407 (12)C6—H6'0.9800
N2—C51.264 (15)C7—H7A0.9600
N2—Ag1i2.232 (10)C7—H7B0.9600
N3—C51.342 (17)C7—H7C0.9600
N3—C41.373 (15)C8—H8A0.9600
N3—H30.8900C8—H8B0.9600
C1—C21.520 (19)C8—H8C0.9600
C1—H1A0.9600C7'—H7'10.9600
C1—H1B0.9600C7'—H7'20.9600
C1—H1C0.9600C7'—H7'30.9600
C2—C41.498 (18)C8'—H8'10.9600
C2—C31.52 (2)C8'—H8'20.9600
C2—H20.9800C8'—H8'30.9600
C3—H3A0.9600
N1—Ag1—N2i127.2 (3)N1—C4—C2125.2 (10)
N1—Ag1—O2100.7 (4)N3—C4—C2126.2 (11)
N2i—Ag1—O2108.0 (4)N2—C5—N3110.6 (11)
N1—Ag1—O1110.5 (4)N2—C5—C6124.8 (13)
N2i—Ag1—O1121.8 (4)N3—C5—C6124.6 (13)
O2—Ag1—O148.0 (3)C5—C6—C7'118.6 (15)
N4—O1—Ag195.3 (7)C5—C6—C8'124.9 (15)
N4—O2—Ag196.6 (8)C7'—C6—C8'114.3 (10)
C4—N1—N2106.9 (9)C5—C6—C7111.1 (17)
C4—N1—Ag1135.2 (7)C5—C6—C8115.7 (17)
N2—N1—Ag1117.1 (7)C7'—C6—C8121 (2)
C5—N2—N1107.8 (10)C7—C6—C8110.4 (10)
C5—N2—Ag1i136.3 (9)C5—C6—H6106.3
N1—N2—Ag1i115.6 (7)C7—C6—H6106.3
C5—N3—C4106.1 (10)C8—C6—H6106.3
C5—N3—H3126.9C6—C7—H7A109.5
C4—N3—H3126.9C6—C7—H7B109.5
O2—N4—O1119.8 (11)H7A—C7—H7B109.5
O2—N4—O3121.1 (12)C6—C7—H7C109.5
O1—N4—O3118.8 (11)H7A—C7—H7C109.5
C2—C1—H1A109.5H7B—C7—H7C109.5
C2—C1—H1B109.5C6—C8—H8A109.5
H1A—C1—H1B109.5C6—C8—H8B109.5
C2—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C6—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
C4—C2—C1112.3 (11)H8B—C8—H8C109.5
C4—C2—C3110.7 (11)C6—C7'—H7'1109.5
C1—C2—C3113.7 (13)C6—C7'—H7'2109.5
C4—C2—H2106.6H7'1—C7'—H7'2109.5
C1—C2—H2106.6C6—C7'—H7'3109.5
C3—C2—H2106.6H7'1—C7'—H7'3109.5
C2—C3—H3A109.5H7'2—C7'—H7'3109.5
C2—C3—H3B109.5C6—C8'—H8'1109.5
H3A—C3—H3B109.5C6—C8'—H8'2109.5
C2—C3—H3C109.5H8'1—C8'—H8'2109.5
H3A—C3—H3C109.5C6—C8'—H8'3109.5
H3B—C3—H3C109.5H8'1—C8'—H8'3109.5
N1—C4—N3108.5 (10)H8'2—C8'—H8'3109.5
N1—Ag1—O1—N4−89.2 (9)N2—N1—C4—C2−178.6 (10)
N2i—Ag1—O1—N482.9 (9)Ag1—N1—C4—C2−9.6 (18)
O2—Ag1—O1—N4−3.1 (8)C5—N3—C4—N1−0.4 (13)
N1—Ag1—O2—N4111.2 (9)C5—N3—C4—C2179.2 (11)
N2i—Ag1—O2—N4−113.7 (9)C1—C2—C4—N1−126.3 (14)
O1—Ag1—O2—N43.2 (8)C3—C2—C4—N1105.4 (15)
N2i—Ag1—N1—C4−170.4 (10)C1—C2—C4—N354.0 (16)
O2—Ag1—N1—C4−47.8 (11)C3—C2—C4—N3−74.2 (17)
O1—Ag1—N1—C41.2 (12)N1—N2—C5—N31.1 (14)
N2i—Ag1—N1—N2−2.1 (11)Ag1i—N2—C5—N3−171.8 (9)
O2—Ag1—N1—N2120.4 (8)N1—N2—C5—C6179.2 (11)
O1—Ag1—N1—N2169.4 (7)Ag1i—N2—C5—C66(2)
C4—N1—N2—C5−1.3 (13)C4—N3—C5—N2−0.4 (14)
Ag1—N1—N2—C5−172.7 (8)C4—N3—C5—C6−178.5 (11)
C4—N1—N2—Ag1i173.2 (7)N2—C5—C6—C7'74 (3)
Ag1—N1—N2—Ag1i1.9 (10)N3—C5—C6—C7'−108 (2)
Ag1—O2—N4—O1−5.8 (14)N2—C5—C6—C8'−88 (3)
Ag1—O2—N4—O3−179.6 (12)N3—C5—C6—C8'90 (3)
Ag1—O1—N4—O25.8 (14)N2—C5—C6—C7104 (2)
Ag1—O1—N4—O3179.7 (12)N3—C5—C6—C7−78 (2)
N2—N1—C4—N31.0 (12)N2—C5—C6—C8−128.8 (19)
Ag1—N1—C4—N3170.1 (8)N3—C5—C6—C849 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.892.062.93 (1)167

Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2560).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (1999). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714–719.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography