PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2022.
Published online 2009 July 29. doi:  10.1107/S1600536809029316
PMCID: PMC2977352

(E)-3-[(4-Butyl­phen­yl)imino­meth­yl]benzene-1,2-diol

Abstract

The title compound, C17H19NO2, exists as an enol–imine tautomer. The dihedral angle between the two benzene rings is 4.6 (2)°. The mol­ecular structure is stabilized by intramol­ecular O—H(...)O and O—H(...)N hydrogen bonds which generate S(5) and S(6) ring motifs, respectively. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H(...)O hydrogen bonds. In addition, C—H(...)π inter­actions involving both benzene rings are observed.

Related literature

For general background to Schiff bases, see: Lozier et al. (1975 [triangle]); Calligaris et al. (1972 [triangle]); Maslen & Waters (1975 [triangle]); Steward & Lingafelter (1959 [triangle]). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis et al. (1987 [triangle]); Moustakali-Mavridis et al. (1980 [triangle]). For graph-set motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Temel et al. (2007 [triangle]); Koşar et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2022-scheme1.jpg

Experimental

Crystal data

  • C17H19NO2
  • M r = 269.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2022-efi1.jpg
  • a = 16.2774 (13) Å
  • b = 6.0148 (6) Å
  • c = 17.6166 (14) Å
  • β = 121.476 (5)°
  • V = 1471.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.50 × 0.45 × 0.03 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.954, T max = 0.998
  • 8711 measured reflections
  • 3061 independent reflections
  • 1643 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.163
  • S = 1.07
  • 3061 reflections
  • 189 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029316/ci2863sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029316/ci2863Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases are widely used as ligands in the field of coordination chemistry and they play an important role in various field of chemistry due to their biological activities (Lozier et al., 1975). o-Hydroxy Schiff bases derived from the reaction of o-hydroxy aldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). Some Schiff bases derived from salicylaldehyde have attracted the interest of chemists and physicists because they show thermochromism and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis, et al., 1987). It has been proposed that molecules showing thermochromism are planar while those showing photochromism are non-planar (Moustakali-Mavridis et al., 1980). There are two types of intramolecular hydrogen bonds in Schiff bases arising from the keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms.

X-ray analysis shows that compound (I) prefers the enol-imine tautomeric form with a strong intramolecular O—H···N hydrogen bond. A H atom is located on atom O1, thus the enol-imine tautomer is favoured over the keto-amine form, as indicated by the C2—O1 [1.333 (2) Å], C7—N1 [1.297 (2) Å], C1—C7 [1.433 (2) Å] and C1—C2 [1.406 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.333 (2) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.297 (2) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2-fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

The molecule of (I) is nearly planar, with a dihedral angle between the benzene rings A(C1-C6) and B(C8-C13) of 4.6 (2) Å. Intramolecular O—H···O and O—H···N hydrogen bonds generate S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995) (Fig. 1). The nearly planar S(6) ring forms dihedral angles of 2.3 (4)° and 2.5 (5)° with the rings A and B, respectively.

In the crystal, molecules of (I) are linked by intermolecular O—H···O hydrogen bonds forming centrosymmetric dimers (Fig.2). In addition, C6—H6···Cg2 and C10—H10···Cg1 interactions (Cg1 and Cg2 are the centroids of the C1—C6 and C8—C13 rings, respectively) are observed (Table 1).

Experimental

Compound (I) was prepared by refluxing a mixture of 2,3-dihydroxy benzaldehyde (0.5 g, 0.0036 mol) in ethanol (20 ml) and 4-butilanilyne (0.54 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of (I) suitable for X-ray analysis were obtained from a methanol solution by slow evaporation (yield 85%; m.p. 363–364 K).

Refinement

The hydroxyl H atoms were located in a difference Fourier map and were refined with a O-H distance restraint of 0.83 (2) Å. All other H-atoms were refined using a riding model with C-H = 0.93–0.96 Å (Uiso = 1.2Ueq of the parent atom) for aromatic and ethyl C atoms and C-H = 0.97 Å (Uiso = 1.5Ueq of the parent atom) for methyl C atoms.

Figures

Fig. 1.
An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
Fig. 2.
A packing diagram for (I), showing the formation of dimers through O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity [symmetry code (i): 1-x, 3-y, -z].

Crystal data

C17H19NO2F(000) = 576
Mr = 269.33Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8711 reflections
a = 16.2774 (13) Åθ = 1.4–27.4°
b = 6.0148 (6) ŵ = 0.08 mm1
c = 17.6166 (14) ÅT = 296 K
β = 121.476 (5)°Thin plate, red
V = 1471.0 (2) Å30.50 × 0.45 × 0.03 mm
Z = 4

Data collection

Stoe IPDSII diffractometer3061 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.5°
rotation method scansh = −20→20
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −7→7
Tmin = 0.954, Tmax = 0.998l = −22→22
8711 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0507P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.044
3061 reflectionsΔρmax = 0.15 e Å3
189 parametersΔρmin = −0.15 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.57490 (18)0.9538 (4)0.13401 (17)0.0578 (6)
C20.57322 (18)1.1547 (4)0.09238 (17)0.0572 (6)
C30.64541 (18)1.1943 (4)0.07262 (18)0.0613 (7)
C40.71906 (19)1.0448 (5)0.0989 (2)0.0690 (8)
H40.76771.07490.08760.083*
C50.7222 (2)0.8493 (5)0.1423 (2)0.0733 (8)
H50.77260.74960.15970.088*
C60.65099 (19)0.8032 (4)0.15939 (18)0.0666 (7)
H60.65300.67150.18800.080*
C70.49848 (19)0.9019 (4)0.14886 (18)0.0621 (7)
H70.49910.76630.17460.074*
C80.34786 (18)0.9936 (4)0.13574 (17)0.0586 (6)
C90.3369 (2)0.8029 (5)0.1736 (2)0.0760 (8)
H90.38380.69260.19470.091*
C100.2569 (2)0.7761 (5)0.1801 (2)0.0787 (9)
H100.25110.64770.20640.094*
C110.1851 (2)0.9339 (5)0.1489 (2)0.0697 (8)
C120.1964 (2)1.1213 (5)0.1113 (2)0.0789 (9)
H120.14901.23050.08980.095*
C130.2768 (2)1.1527 (4)0.1044 (2)0.0732 (8)
H130.28261.28190.07850.088*
C140.0994 (2)0.9044 (5)0.1604 (3)0.0939 (10)
H14A0.12230.91250.22340.113*
H14B0.05551.02780.13140.113*
C150.0450 (2)0.6941 (6)0.1246 (2)0.0910 (10)
H15A0.08800.57060.15570.109*
H15B0.02470.68220.06230.109*
C16−0.0432 (2)0.6723 (6)0.1326 (3)0.0975 (11)
H16A−0.02300.68260.19490.117*
H16B−0.08620.79590.10180.117*
C17−0.0972 (3)0.4600 (6)0.0956 (3)0.1137 (13)
H17A−0.11260.44200.03540.171*
H17B−0.15550.46400.09670.171*
H17C−0.05810.33750.13100.171*
N10.42843 (15)1.0402 (3)0.12717 (14)0.0599 (6)
O10.50446 (13)1.3071 (3)0.06822 (13)0.0666 (5)
O20.64235 (14)1.3817 (3)0.02744 (15)0.0767 (6)
H10.466 (2)1.247 (5)0.083 (2)0.115*
H20.5901 (17)1.449 (5)0.016 (2)0.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0654 (15)0.0468 (13)0.0619 (17)−0.0011 (12)0.0337 (14)0.0022 (12)
C20.0608 (15)0.0481 (13)0.0663 (17)−0.0007 (12)0.0355 (14)−0.0042 (12)
C30.0708 (16)0.0471 (13)0.0725 (19)−0.0035 (12)0.0421 (15)−0.0018 (13)
C40.0678 (16)0.0638 (16)0.083 (2)−0.0022 (14)0.0445 (16)−0.0101 (16)
C50.0736 (18)0.0612 (17)0.088 (2)0.0099 (14)0.0442 (17)−0.0008 (16)
C60.0732 (17)0.0527 (14)0.0730 (19)0.0058 (13)0.0375 (15)0.0042 (14)
C70.0723 (17)0.0512 (14)0.0642 (18)−0.0018 (13)0.0367 (14)0.0041 (13)
C80.0630 (15)0.0535 (14)0.0608 (17)−0.0019 (12)0.0335 (13)−0.0001 (13)
C90.0702 (17)0.0635 (16)0.097 (2)0.0085 (14)0.0454 (17)0.0242 (17)
C100.0731 (17)0.0723 (18)0.096 (2)0.0003 (15)0.0476 (17)0.0199 (17)
C110.0681 (17)0.0650 (17)0.081 (2)0.0001 (14)0.0426 (16)−0.0011 (16)
C120.0754 (19)0.0657 (17)0.103 (2)0.0118 (15)0.0521 (19)0.0094 (17)
C130.0798 (18)0.0568 (15)0.091 (2)0.0072 (14)0.0504 (17)0.0138 (16)
C140.087 (2)0.084 (2)0.129 (3)−0.0094 (18)0.069 (2)−0.016 (2)
C150.0775 (19)0.091 (2)0.117 (3)−0.0056 (18)0.059 (2)−0.007 (2)
C160.084 (2)0.107 (3)0.121 (3)−0.0090 (19)0.066 (2)−0.008 (2)
C170.106 (3)0.095 (3)0.161 (4)−0.010 (2)0.085 (3)−0.002 (3)
N10.0647 (12)0.0532 (12)0.0649 (15)−0.0010 (11)0.0361 (11)0.0026 (11)
O10.0737 (12)0.0515 (10)0.0877 (14)0.0050 (9)0.0512 (11)0.0095 (10)
O20.0887 (14)0.0557 (11)0.1117 (17)0.0022 (10)0.0704 (14)0.0086 (11)

Geometric parameters (Å, °)

C1—C61.406 (3)C10—H100.93
C1—C21.406 (3)C11—C121.367 (4)
C1—C71.433 (3)C11—C141.520 (4)
C2—O11.333 (3)C12—C131.389 (4)
C2—C31.409 (3)C12—H120.93
C3—O21.365 (3)C13—H130.93
C3—C41.371 (4)C14—C151.483 (4)
C4—C51.389 (4)C14—H14A0.97
C4—H40.93C14—H14B0.97
C5—C61.370 (4)C15—C161.519 (4)
C5—H50.93C15—H15A0.97
C6—H60.93C15—H15B0.97
C7—N11.297 (3)C16—C171.493 (5)
C7—H70.93C16—H16A0.97
C8—C131.375 (3)C16—H16B0.97
C8—C91.384 (3)C17—H17A0.96
C8—N11.424 (3)C17—H17B0.96
C9—C101.375 (4)C17—H17C0.96
C9—H90.93O1—H10.88 (2)
C10—C111.379 (4)O2—H20.86 (2)
C6—C1—C2119.6 (2)C11—C12—C13121.7 (3)
C6—C1—C7120.4 (2)C11—C12—H12119.1
C2—C1—C7120.0 (2)C13—C12—H12119.1
O1—C2—C1122.8 (2)C8—C13—C12120.2 (3)
O1—C2—C3118.3 (2)C8—C13—H13119.9
C1—C2—C3118.9 (2)C12—C13—H13119.9
O2—C3—C4119.8 (2)C15—C14—C11115.4 (3)
O2—C3—C2120.2 (2)C15—C14—H14A108.4
C4—C3—C2120.0 (2)C11—C14—H14A108.4
C3—C4—C5121.1 (2)C15—C14—H14B108.4
C3—C4—H4119.5C11—C14—H14B108.4
C5—C4—H4119.5H14A—C14—H14B107.5
C6—C5—C4120.0 (3)C14—C15—C16114.7 (3)
C6—C5—H5120.0C14—C15—H15A108.6
C4—C5—H5120.0C16—C15—H15A108.6
C5—C6—C1120.4 (3)C14—C15—H15B108.6
C5—C6—H6119.8C16—C15—H15B108.6
C1—C6—H6119.8H15A—C15—H15B107.6
N1—C7—C1121.3 (2)C17—C16—C15113.8 (3)
N1—C7—H7119.3C17—C16—H16A108.8
C1—C7—H7119.3C15—C16—H16A108.8
C13—C8—C9118.5 (2)C17—C16—H16B108.8
C13—C8—N1116.7 (2)C15—C16—H16B108.8
C9—C8—N1124.8 (2)H16A—C16—H16B107.7
C10—C9—C8120.2 (3)C16—C17—H17A109.5
C10—C9—H9119.9C16—C17—H17B109.5
C8—C9—H9119.9H17A—C17—H17B109.5
C9—C10—C11121.9 (3)C16—C17—H17C109.5
C9—C10—H10119.0H17A—C17—H17C109.5
C11—C10—H10119.0H17B—C17—H17C109.5
C12—C11—C10117.4 (2)C7—N1—C8124.0 (2)
C12—C11—C14121.7 (3)C2—O1—H1104 (2)
C10—C11—C14120.8 (3)C3—O2—H2105 (2)
C6—C1—C2—O1−178.6 (2)N1—C8—C9—C10178.8 (3)
C7—C1—C2—O12.6 (4)C8—C9—C10—C110.8 (5)
C6—C1—C2—C33.5 (4)C9—C10—C11—C12−0.5 (5)
C7—C1—C2—C3−175.4 (2)C9—C10—C11—C14−177.4 (3)
O1—C2—C3—O2−2.0 (4)C10—C11—C12—C130.1 (5)
C1—C2—C3—O2176.0 (2)C14—C11—C12—C13177.0 (3)
O1—C2—C3—C4177.9 (2)C9—C8—C13—C120.3 (4)
C1—C2—C3—C4−4.1 (4)N1—C8—C13—C12−179.2 (2)
O2—C3—C4—C5−177.8 (3)C11—C12—C13—C80.0 (5)
C2—C3—C4—C52.4 (4)C12—C11—C14—C15128.0 (4)
C3—C4—C5—C60.0 (4)C10—C11—C14—C15−55.2 (4)
C4—C5—C6—C1−0.6 (4)C11—C14—C15—C16−177.2 (3)
C2—C1—C6—C5−1.2 (4)C14—C15—C16—C17179.6 (3)
C7—C1—C6—C5177.6 (3)C1—C7—N1—C8176.5 (2)
C6—C1—C7—N1178.9 (3)C13—C8—N1—C7−176.0 (3)
C2—C1—C7—N1−2.2 (4)C9—C8—N1—C74.6 (4)
C13—C8—C9—C10−0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O10.86 (2)2.21 (3)2.728 (2)118 (3)
O2—H2···O1i0.86 (2)2.08 (3)2.802 (3)141 (3)
O1—H1···N10.88 (2)1.74 (2)2.555 (2)155 (3)
C6—H6···Cg2ii0.932.853.645 (3)144
C10—H10···Cg1ii0.932.803.491 (3)132

Symmetry codes: (i) −x+1, −y+3, −z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2863).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev.7, 385–403.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.
  • Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2109–o2111.
  • Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J.15, 955–962. [PubMed]
  • Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev.17, 137–176.
  • Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst.12, 842–845.
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography