PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1866.
Published online 2009 July 15. doi:  10.1107/S1600536809026464
PMCID: PMC2977340

3-(1-Adamantylamino)-3-methyl-1-phenyl­quinoline-2,4(1H,3H)-dione

Abstract

The structure of the title compound, C26H28N2O2, contains essentially planar quinoline and benzene rings, the maximum deviations from the best plane being 0.086 (2) and 0.0056 (19) Å, respectively; the dihedral angle between the rings is 82.87 (4)°. The adamantane cage consists of three fused cyclo­hexane rings in classical chair conformations, with C—C—C angles in the range 107.85 (15)–111.35 (15)°. Enanti­omers are linked alternately into chains along the c axis via short N—H(...)O inter­actions and further C–H(...)π inter­actions stabilize pairs of enanti­omers, forming a two-dimensional network.

Related literature

For the synthesis and biological activity of related compounds, see: Kafka et al. (2002 [triangle]); Nayyar et al. (2007 [triangle]). For the properties of adamantane-containing compounds, see: van Bommel et al. (2001 [triangle]). For a related structure, see: Shishkina et al. (2001 [triangle]). For background to C—H(...)π inter­actions, see: Nishio (2004 [triangle]); Jorgensen & Severance (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1866-scheme1.jpg

Experimental

Crystal data

  • C26H28N2O2
  • M r = 400.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1866-efi1.jpg
  • a = 9.9714 (4) Å
  • b = 24.1041 (11) Å
  • c = 9.3805 (5) Å
  • β = 113.111 (5)°
  • V = 2073.68 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Kuma KM-4 CCD diffractometer
  • Absorption correction: none
  • 22477 measured reflections
  • 3648 independent reflections
  • 2226 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.106
  • S = 0.88
  • 3648 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: Xcalibur (Oxford Diffraction, 2006 [triangle]); cell refinement: Xcalibur; data reduction: Xcalibur; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026464/pk2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026464/pk2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support for this work from the Science Foundation of the Czech Republic (grant No. 203/07/03) and by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

supplementary crystallographic information

Comment

A number of compounds that include the quinoline moiety have well known chemotherapeutical properties. From a pharmacological point of view, two very important and seemingly contradictory properties may be improved when the adamantane substituent is introduced into biologically active compounds. The solubility in aqueous media may be enhanced by complexation of adamantane with β-cyclodextrin and the liphophilic adamantane cage may accelerate permeability through biological membranes (van Bommel et al., 2001). Recently, some quinolines bearing adamantyl substituents have been introduced as promising anti-tuberculosis agents (Nayyar et al., 2007).

The molecule of the title compound (Fig. 1) consists of planar benzene and quinoline rings with maximum deviations from the best plane being 0.0056 (18) Å for C23 and 0.086 (2) Å for C12, respectively. The dihedral angle between quinoline and benzene rings is 82.87 (4)°. The torsion angles describing the alignment of the adamantane and quinoline moiety C12–C11–N1–C1 and C11–N1–C1–C8 are -73.9 (2)° and 16.8 (2)°, respectively. Enantiomers alternate in chains along the c axis, and are linked via N1–H1a···O2 short interactions (Table 1, Fig. 2). Pairs of inverse enantiomers are stabilized by edge-to-face C–H···π interactions with the H···Cg distance being 2.914 (2) Å (Cg is the centroid of C13–C18).

Experimental

The title compound was prepared according to a slightly modified literature procedure of Kafka et al. (2002). Adamantane-1-amine hydrochloride (200 mg, 1.07 mmol) was dissolved in 3 ml of DMF and triethylamine (212 mg, 2.1 mmol) was added dropwise at 273 K. Into this mixture, a solution of N-phenyl-3-chloro-3-methylquinoline-2,4-dione (153 mg, 0.535 mmol) in 3 ml of DMF was added dropwise at 273 K. The resulting solution was stirred for 93 h at room temperature until starting material disappeared (according to TLC). The mixture was poured into crushed ice, extracted several times with diethyl ether, the combined organic portions were dried over sodium sulfate and the crude product was obtained after evaporation of solvent under reduced pressure. The title compound was isolated from complex crude material by column chromatography (silica gel, ethyl acetate:hexane 1:4 v/v) as a pale yellow crystalline powder (53 mg, 25%, mp 449–451 K). The single crystal suitable for X-ray analysis was obtained by spontaneous evaporation from chloroform solution at 298 K.

Refinement

Hydrogen atoms were positioned geometrically and refined as riding using standard SHELXL-97 facilities, with their Uiso set to either 1.2Ueq or 1.5Ueq(methyl) of their parent atoms.

Figures

Fig. 1.
Ellipsoid plot of the asymmetric unit with atoms represented at 50% probability.
Fig. 2.
The crystal packing viewed perpendicular to the bc plane. Hydrogen atoms are omitted except for those participating in H-bonds.

Crystal data

C26H28N2O2F(000) = 856
Mr = 400.50Dx = 1.283 Mg m3
Monoclinic, P21/cMelting point = 451–449 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.9714 (4) ÅCell parameters from 24803 reflections
b = 24.1041 (11) Åθ = 2.8–27.5°
c = 9.3805 (5) ŵ = 0.08 mm1
β = 113.111 (5)°T = 120 K
V = 2073.68 (17) Å3Block, yellow
Z = 40.30 × 0.30 × 0.20 mm

Data collection

Kuma KM-4 CCD diffractometer2226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 25.0°, θmin = 2.8°
Detector resolution: 0.06 pixels mm-1h = −9→11
ω scansk = −28→28
22477 measured reflectionsl = −11→11
3648 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0645P)2] where P = (Fo2 + 2Fc2)/3
3648 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70469 (14)0.07427 (5)0.94015 (15)0.0323 (3)
O20.63111 (15)0.23091 (5)0.61207 (17)0.0406 (4)
N10.57413 (16)0.17819 (6)0.85742 (19)0.0350 (4)
H1A0.60300.19600.94640.042*
N20.73524 (16)0.06678 (6)0.71431 (16)0.0228 (4)
C10.4160 (2)0.16879 (7)0.7732 (2)0.0262 (5)
C20.3379 (2)0.22270 (7)0.6974 (2)0.0322 (5)
H2A0.37610.23550.62030.039*
H2B0.35850.25180.77760.039*
C30.1719 (2)0.21405 (8)0.6168 (2)0.0340 (5)
H3A0.12370.24950.56800.041*
C40.1132 (2)0.19508 (8)0.7362 (2)0.0390 (6)
H4A0.00640.18970.68530.047*
H4B0.13270.22390.81710.047*
C50.1858 (2)0.14072 (9)0.8107 (2)0.0370 (5)
H5A0.14690.12840.88880.044*
C60.1570 (2)0.09630 (8)0.6867 (2)0.0380 (5)
H6A0.20530.06130.73510.046*
H6B0.05090.08930.63530.046*
C70.2151 (2)0.11513 (7)0.5674 (2)0.0295 (5)
H7A0.19430.08610.48550.035*
C80.3816 (2)0.12404 (8)0.6483 (2)0.0316 (5)
H8A0.42920.08880.69600.038*
H8B0.42070.13530.57070.038*
C90.3527 (2)0.14983 (8)0.8907 (2)0.0350 (5)
H9A0.37350.17820.97290.042*
H9B0.40030.11480.94020.042*
C100.1428 (2)0.16958 (8)0.4931 (2)0.0334 (5)
H10A0.18180.18170.41610.040*
H10B0.03630.16390.43850.040*
C110.6844 (2)0.16025 (7)0.8039 (2)0.0265 (5)
C120.70522 (19)0.09696 (7)0.8239 (2)0.0256 (5)
C130.72468 (19)0.08849 (7)0.5697 (2)0.0234 (4)
C140.74683 (19)0.05400 (8)0.4616 (2)0.0271 (5)
H14A0.77130.01610.48600.033*
C150.7334 (2)0.07470 (8)0.3187 (2)0.0320 (5)
H15A0.74930.05080.24630.038*
C160.6972 (2)0.12964 (8)0.2799 (2)0.0342 (5)
H16A0.68700.14340.18120.041*
C170.6760 (2)0.16425 (8)0.3864 (2)0.0309 (5)
H17A0.65190.20210.36060.037*
C180.68945 (19)0.14453 (7)0.5323 (2)0.0250 (4)
C190.6637 (2)0.18194 (7)0.6430 (2)0.0285 (5)
C200.8325 (2)0.18413 (7)0.9155 (2)0.0344 (5)
H20A0.83160.22460.90490.052*
H20B0.91100.16850.88980.052*
H20C0.84880.17441.02240.052*
C210.7661 (2)0.00838 (7)0.74680 (19)0.0218 (4)
C220.9084 (2)−0.01042 (7)0.80389 (19)0.0255 (5)
H22A0.98610.01480.81940.031*
C230.9372 (2)−0.06604 (8)0.8385 (2)0.0306 (5)
H23A1.0347−0.07930.87640.037*
C240.8235 (2)−0.10230 (8)0.8176 (2)0.0335 (5)
H24A0.8435−0.14040.84270.040*
C250.6813 (2)−0.08353 (8)0.7607 (2)0.0350 (5)
H25A0.6037−0.10870.74670.042*
C260.6517 (2)−0.02784 (7)0.7239 (2)0.0299 (5)
H26A0.5541−0.01470.68340.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0378 (9)0.0373 (8)0.0255 (8)−0.0002 (6)0.0164 (7)0.0002 (6)
O20.0436 (9)0.0292 (8)0.0539 (10)0.0039 (7)0.0245 (8)0.0057 (7)
N10.0229 (10)0.0466 (10)0.0344 (10)−0.0003 (8)0.0102 (8)−0.0187 (8)
N20.0263 (9)0.0234 (8)0.0208 (8)0.0005 (7)0.0117 (7)0.0007 (7)
C10.0224 (12)0.0297 (11)0.0263 (11)−0.0021 (8)0.0093 (9)−0.0035 (8)
C20.0351 (13)0.0297 (11)0.0341 (12)−0.0013 (9)0.0161 (10)−0.0044 (9)
C30.0368 (13)0.0327 (11)0.0313 (12)0.0090 (10)0.0120 (10)0.0020 (9)
C40.0324 (13)0.0495 (13)0.0382 (13)−0.0009 (10)0.0171 (11)−0.0093 (10)
C50.0329 (13)0.0547 (14)0.0274 (12)−0.0028 (10)0.0161 (10)0.0029 (10)
C60.0361 (13)0.0414 (12)0.0361 (12)−0.0090 (10)0.0137 (10)0.0019 (10)
C70.0309 (12)0.0328 (11)0.0239 (11)−0.0034 (9)0.0097 (9)−0.0024 (9)
C80.0305 (12)0.0320 (11)0.0326 (12)−0.0005 (9)0.0127 (10)−0.0024 (9)
C90.0349 (13)0.0408 (12)0.0271 (11)−0.0013 (10)0.0097 (10)−0.0006 (9)
C100.0328 (13)0.0402 (12)0.0272 (11)−0.0022 (9)0.0116 (10)0.0002 (9)
C110.0234 (12)0.0276 (10)0.0294 (11)0.0007 (8)0.0115 (9)−0.0020 (8)
C120.0205 (11)0.0319 (11)0.0231 (11)0.0005 (8)0.0074 (9)−0.0020 (9)
C130.0162 (11)0.0315 (11)0.0225 (10)−0.0042 (8)0.0074 (8)0.0000 (8)
C140.0248 (12)0.0300 (11)0.0272 (11)−0.0018 (9)0.0108 (9)−0.0003 (9)
C150.0310 (13)0.0428 (12)0.0243 (11)−0.0058 (10)0.0130 (10)−0.0023 (9)
C160.0323 (13)0.0461 (13)0.0250 (11)−0.0074 (10)0.0120 (10)0.0060 (9)
C170.0247 (12)0.0333 (11)0.0329 (12)−0.0048 (9)0.0094 (10)0.0083 (9)
C180.0177 (11)0.0300 (11)0.0277 (11)−0.0012 (8)0.0091 (9)0.0038 (8)
C190.0192 (11)0.0247 (11)0.0411 (13)−0.0003 (9)0.0113 (10)0.0005 (9)
C200.0284 (13)0.0300 (11)0.0423 (13)−0.0007 (9)0.0112 (10)−0.0042 (9)
C210.0248 (12)0.0248 (10)0.0173 (10)−0.0004 (9)0.0100 (8)−0.0015 (8)
C220.0260 (12)0.0294 (11)0.0209 (10)−0.0038 (9)0.0092 (9)−0.0019 (8)
C230.0345 (13)0.0319 (11)0.0217 (11)0.0064 (10)0.0070 (9)0.0010 (8)
C240.0531 (16)0.0258 (11)0.0241 (11)0.0018 (11)0.0177 (11)0.0020 (9)
C250.0463 (15)0.0320 (12)0.0324 (12)−0.0139 (10)0.0215 (11)−0.0052 (9)
C260.0256 (12)0.0348 (12)0.0309 (12)−0.0028 (9)0.0128 (9)−0.0021 (9)

Geometric parameters (Å, °)

O1—C121.222 (2)C9—H9B0.9900
O2—C191.229 (2)C10—H10A0.9900
N1—C111.443 (2)C10—H10B0.9900
N1—C11.478 (2)C11—C191.533 (3)
N1—H1A0.8800C11—C121.541 (3)
N2—C121.384 (2)C11—C201.548 (3)
N2—C131.419 (2)C13—C141.394 (2)
N2—C211.448 (2)C13—C181.405 (2)
C1—C81.529 (2)C14—C151.387 (2)
C1—C21.538 (2)C14—H14A0.9500
C1—C91.539 (3)C15—C161.383 (3)
C2—C31.540 (3)C15—H15A0.9500
C2—H2A0.9900C16—C171.380 (3)
C2—H2B0.9900C16—H16A0.9500
C3—C101.521 (3)C17—C181.404 (3)
C3—C41.523 (3)C17—H17A0.9500
C3—H3A1.0000C18—C191.472 (3)
C4—C51.527 (3)C20—H20A0.9800
C4—H4A0.9900C20—H20B0.9800
C4—H4B0.9900C20—H20C0.9800
C5—C61.523 (3)C21—C221.381 (2)
C5—C91.549 (3)C21—C261.384 (2)
C5—H5A1.0000C22—C231.383 (2)
C6—C71.517 (3)C22—H22A0.9500
C6—H6A0.9900C23—C241.383 (3)
C6—H6B0.9900C23—H23A0.9500
C7—C101.528 (2)C24—C251.381 (3)
C7—C81.546 (3)C24—H24A0.9500
C7—H7A1.0000C25—C261.389 (3)
C8—H8A0.9900C25—H25A0.9500
C8—H8B0.9900C26—H26A0.9500
C9—H9A0.9900
C11—N1—C1124.55 (15)C3—C10—C7110.04 (15)
C11—N1—H1A117.7C3—C10—H10A109.7
C1—N1—H1A117.7C7—C10—H10A109.7
C12—N2—C13124.03 (15)C3—C10—H10B109.7
C12—N2—C21116.40 (14)C7—C10—H10B109.7
C13—N2—C21119.32 (14)H10A—C10—H10B108.2
N1—C1—C8112.90 (15)N1—C11—C19114.45 (15)
N1—C1—C2110.97 (14)N1—C11—C12109.83 (15)
C8—C1—C2108.72 (15)C19—C11—C12114.63 (15)
N1—C1—C9108.31 (15)N1—C11—C20107.98 (15)
C8—C1—C9107.93 (15)C19—C11—C20105.25 (15)
C2—C1—C9107.85 (15)C12—C11—C20103.83 (14)
C1—C2—C3111.34 (15)O1—C12—N2120.37 (16)
C1—C2—H2A109.4O1—C12—C11120.26 (16)
C3—C2—H2A109.4N2—C12—C11119.20 (16)
C1—C2—H2B109.4C14—C13—C18119.17 (16)
C3—C2—H2B109.4C14—C13—N2120.12 (16)
H2A—C2—H2B108.0C18—C13—N2120.70 (16)
C10—C3—C4109.61 (16)C15—C14—C13120.37 (17)
C10—C3—C2108.44 (15)C15—C14—H14A119.8
C4—C3—C2109.23 (16)C13—C14—H14A119.8
C10—C3—H3A109.8C16—C15—C14120.99 (18)
C4—C3—H3A109.8C16—C15—H15A119.5
C2—C3—H3A109.8C14—C15—H15A119.5
C3—C4—C5110.11 (16)C17—C16—C15119.10 (18)
C3—C4—H4A109.6C17—C16—H16A120.5
C5—C4—H4A109.6C15—C16—H16A120.5
C3—C4—H4B109.6C16—C17—C18121.18 (18)
C5—C4—H4B109.6C16—C17—H17A119.4
H4A—C4—H4B108.2C18—C17—H17A119.4
C6—C5—C4109.88 (16)C17—C18—C13119.19 (17)
C6—C5—C9108.32 (16)C17—C18—C19120.23 (17)
C4—C5—C9109.05 (16)C13—C18—C19120.57 (16)
C6—C5—H5A109.9O2—C19—C18121.71 (18)
C4—C5—H5A109.9O2—C19—C11118.74 (17)
C9—C5—H5A109.9C18—C19—C11119.50 (15)
C7—C6—C5109.93 (16)C11—C20—H20A109.5
C7—C6—H6A109.7C11—C20—H20B109.5
C5—C6—H6A109.7H20A—C20—H20B109.5
C7—C6—H6B109.7C11—C20—H20C109.5
C5—C6—H6B109.7H20A—C20—H20C109.5
H6A—C6—H6B108.2H20B—C20—H20C109.5
C6—C7—C10110.18 (16)C22—C21—C26120.75 (16)
C6—C7—C8109.08 (16)C22—C21—N2120.11 (15)
C10—C7—C8109.17 (15)C26—C21—N2119.11 (16)
C6—C7—H7A109.5C21—C22—C23119.75 (17)
C10—C7—H7A109.5C21—C22—H22A120.1
C8—C7—H7A109.5C23—C22—H22A120.1
C1—C8—C7110.40 (15)C24—C23—C22119.76 (19)
C1—C8—H8A109.6C24—C23—H23A120.1
C7—C8—H8A109.6C22—C23—H23A120.1
C1—C8—H8B109.6C25—C24—C23120.53 (18)
C7—C8—H8B109.6C25—C24—H24A119.7
H8A—C8—H8B108.1C23—C24—H24A119.7
C1—C9—C5111.07 (15)C24—C25—C26119.86 (19)
C1—C9—H9A109.4C24—C25—H25A120.1
C5—C9—H9A109.4C26—C25—H25A120.1
C1—C9—H9B109.4C21—C26—C25119.33 (19)
C5—C9—H9B109.4C21—C26—H26A120.3
H9A—C9—H9B108.0C25—C26—H26A120.3
C11—N1—C1—C816.8 (2)N1—C11—C12—N2144.29 (16)
C11—N1—C1—C2−105.55 (19)C19—C11—C12—N213.8 (2)
C11—N1—C1—C9136.25 (18)C20—C11—C12—N2−100.45 (18)
N1—C1—C2—C3−176.90 (15)C12—N2—C13—C14−175.37 (16)
C8—C1—C2—C358.4 (2)C21—N2—C13—C14−1.3 (2)
C9—C1—C2—C3−58.42 (19)C12—N2—C13—C183.5 (3)
C1—C2—C3—C10−59.6 (2)C21—N2—C13—C18177.59 (16)
C1—C2—C3—C459.8 (2)C18—C13—C14—C15−0.4 (3)
C10—C3—C4—C558.9 (2)N2—C13—C14—C15178.54 (16)
C2—C3—C4—C5−59.7 (2)C13—C14—C15—C16−0.4 (3)
C3—C4—C5—C6−58.9 (2)C14—C15—C16—C170.8 (3)
C3—C4—C5—C959.7 (2)C15—C16—C17—C18−0.5 (3)
C4—C5—C6—C758.6 (2)C16—C17—C18—C13−0.2 (3)
C9—C5—C6—C7−60.4 (2)C16—C17—C18—C19−178.86 (17)
C5—C6—C7—C10−58.6 (2)C14—C13—C18—C170.6 (3)
C5—C6—C7—C861.2 (2)N2—C13—C18—C17−178.27 (15)
N1—C1—C8—C7178.59 (15)C14—C13—C18—C19179.30 (16)
C2—C1—C8—C7−57.8 (2)N2—C13—C18—C190.4 (3)
C9—C1—C8—C758.92 (19)C17—C18—C19—O2−0.5 (3)
C6—C7—C8—C1−60.80 (19)C13—C18—C19—O2−179.14 (17)
C10—C7—C8—C159.7 (2)C17—C18—C19—C11−177.74 (16)
N1—C1—C9—C5178.45 (15)C13—C18—C19—C113.6 (3)
C8—C1—C9—C5−59.0 (2)N1—C11—C19—O244.2 (2)
C2—C1—C9—C558.3 (2)C12—C11—C19—O2172.40 (16)
C6—C5—C9—C159.9 (2)C20—C11—C19—O2−74.2 (2)
C4—C5—C9—C1−59.7 (2)N1—C11—C19—C18−138.47 (17)
C4—C3—C10—C7−58.7 (2)C12—C11—C19—C18−10.3 (2)
C2—C3—C10—C760.4 (2)C20—C11—C19—C18103.15 (18)
C6—C7—C10—C358.9 (2)C12—N2—C21—C22−101.15 (19)
C8—C7—C10—C3−60.9 (2)C13—N2—C21—C2284.3 (2)
C1—N1—C11—C1956.7 (2)C12—N2—C21—C2677.1 (2)
C1—N1—C11—C12−73.9 (2)C13—N2—C21—C26−97.42 (19)
C1—N1—C11—C20173.51 (16)C26—C21—C22—C230.1 (3)
C13—N2—C12—O1173.79 (16)N2—C21—C22—C23178.30 (15)
C21—N2—C12—O1−0.4 (2)C21—C22—C23—C24−0.9 (3)
C13—N2—C12—C11−11.0 (2)C22—C23—C24—C250.8 (3)
C21—N2—C12—C11174.78 (15)C23—C24—C25—C260.0 (3)
N1—C11—C12—O1−40.5 (2)C22—C21—C26—C250.8 (3)
C19—C11—C12—O1−170.96 (16)N2—C21—C26—C25−177.47 (16)
C20—C11—C12—O174.8 (2)C24—C25—C26—C21−0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.293.125 (2)158
C25—H25A···Cg1ii0.952.913.659 (2)136

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2176).

References

  • Bommel, K. J. C. van, Metselaar, G. A., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem.66, 5405–5412. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jorgensen, W. L. & Severance, D. L. (1990). J. Am. Chem. Soc.112, 4768–4774.
  • Kafka, S., Klasek, A., Polis, J. & Kosmrlj, J. (2002). Heterocycles, 57, 1659–1682.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Nayyar, A., Monga, V., Malde, A., Coutinho, E. & Jain, R. (2007). Bioorg. Med. Chem.15, 626–640. [PubMed]
  • Nishio, M. (2004). CrystEngComm, 6, 130–158.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Amer, M. & Sidorenko, L. V. (2001). Acta Cryst. E57, o414–o415.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography