PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1009–m1010.
Published online 2009 July 31. doi:  10.1107/S1600536809029456
PMCID: PMC2977339

Diaqua­bis(5-carb­oxy-1H-pyrazole-3-carboxyl­ato-κ2 N 2,O 3)cobalt(II) dihydrate

Abstract

In the title complex, [Co(C5H3N2O4)2(H2O)2]·2H2O, the CoII ion lies on an inversion center and is coordinated in a distorted octa­hedral environment. In the crystal structure, complex and water mol­ecules are linked into a three-dimensional network by O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For a mononuclear zinc(II) complex with a pyrazole-3,5-dicarboxyl­ato ligand, see: Xie et al. (2006 [triangle]) and for a cobalt(III) complex with a 5-carb­oxy-1H-pyrazole-3-carboxyl­ato ligand, see: Xie et al. (2007 [triangle]). The 3,5-pyrazole­dicarboxylic acid ligand is asymmetric and has six potential coordination sites which can act to link together metal centers through a number of bridging modes, see: King et al. (2004 [triangle]). A variety of complexes containing this ligand have been reported, see: Frisch & Cahill (2005 [triangle]); King et al. (2003 [triangle], 2004 [triangle]); Li et al. (2005 [triangle]); Pan, Ching et al. (2001 [triangle]); Pan, Frydel et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1009-scheme1.jpg

Experimental

Crystal data

  • [Co(C5H3N2O4)2(H2O)2]·2H2O
  • M r = 441.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1009-efi1.jpg
  • a = 10.030 (3) Å
  • b = 12.483 (4) Å
  • c = 6.827 (2) Å
  • β = 108.641 (4)°
  • V = 809.9 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 291 K
  • 0.32 × 0.27 × 0.14 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.713, T max = 0.854
  • 5748 measured reflections
  • 1502 independent reflections
  • 1331 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.142
  • S = 1.12
  • 1502 reflections
  • 129 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029456/lh2869sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029456/lh2869Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University Youth Fund (grant No. RC0735) for financial support.

supplementary crystallographic information

Comment

In the past few decades, self-assembly processes involving metal ions and organic ligands directed by either metal coordination or hydrogen bonds have received a great deal of attention in the field of supramolecular chemistry and crystal engineering. The 3,5-pyrazoledicarboxylic acid ligand is asymmetric and has six potential coordination sites which can act to link together metal centers through a number of bridging modes (King et al., 2004). A variety of complexes containing this ligand have been reported (Frisch et al., 2005; King et al., 2003, 2004; Pan, Ching et al., 2001; Pan, Frydel et al., 2001; Li et al., 2005).

The molecular structure of the title complex , (I), is shown in Fig. 1. The CoII ion is located on an inversion center and is coordinated in a distorted octahedral environment. The axial sites are occupied by water molecules and the equatorial plane is fromed by two oxygen donors and two nitrogen donors from two chelating 5-carboxy-pyrazole-3-carboxylato ligands. In the crystal structure complex and water molecules are linked into a three-dimensional network by O-H···O and N-H···O hydrogen bonds.

Experimental

A mixture of cobalt(II) nitrate (hexhydrate) (0.2 mmol, 58 mg), 3,5-pyrazoledicarboxylic acid (0.4 mmol, 62 mg) and H2O (18.0 ml) in a 1:2:5000 molar ratio was sealed in a 25 ml stainless steel reactor with a Teflon liner. The autoclave was kept at 423 K for 3 d, then cooled to room temperature at a rate of 4 K/h. Orange block-shaped crystals of the title complex were collected by filtration for the structural analysis.

Refinement

All H atoms bonded to C and N atoms were initially located in difference Fourier maps but were subsequently refined in a riding-model approximation with C—H = 0.93 Å, N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N). The O atoms bonded to the carboxylic group and the coordinated water atom were included in calculated positions and refined in a riding-model approximation with O-H = 0.82-0.83Å and Uiso(H) = 1.2-1.5Ueq(O). One of the solvent water H atoms was included with O-H = 0.84; Uiso(H) = 1.2Ueq(O) and the other H atom was refined isotropically.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 35% probability displacement ellipsoids for non-H atoms [symmetry code: (A) -x+1, -y+2, -z]. Only the unique solvent water molecule is shown.
Fig. 2.
Part of the crystal structure of (I) showing the donor acceptor distances of hydrogen bonds as dashed lines. H atoms have been omitted for clarity.

Crystal data

[Co(C5H3N2O4)2(H2O)2]·2H2OF(000) = 450
Mr = 441.18Dx = 1.809 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2747 reflections
a = 10.030 (3) Åθ = 2.7–27.9°
b = 12.483 (4) ŵ = 1.14 mm1
c = 6.827 (2) ÅT = 291 K
β = 108.641 (4)°Block, orange
V = 809.9 (5) Å30.32 × 0.27 × 0.14 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1502 independent reflections
Radiation source: fine-focus sealed tube1331 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.713, Tmax = 0.854k = −15→15
5748 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0775P)2 + 1.4115P] where P = (Fo2 + 2Fc2)/3
1502 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50001.00000.00000.0227 (3)
O10.5183 (3)0.8358 (2)−0.0667 (5)0.0308 (6)
O20.6657 (3)0.6977 (2)−0.0142 (5)0.0337 (7)
O31.1998 (3)0.9569 (3)0.3134 (5)0.0408 (8)
O41.0960 (3)1.1105 (2)0.3529 (5)0.0366 (7)
H41.17721.13240.39770.055*
O50.4797 (3)0.9554 (3)0.2803 (5)0.0378 (7)
H1W0.40310.95940.30200.045*
H2W0.52960.90690.34840.045*
O60.7621 (4)0.2301 (3)0.2670 (8)0.0684 (13)
H3W0.76170.29260.31160.082*
N10.7187 (3)0.9727 (3)0.1137 (5)0.0238 (7)
N20.8371 (3)1.0290 (2)0.1925 (5)0.0237 (7)
H20.84021.09580.22510.028*
C10.6402 (4)0.7957 (3)−0.0049 (6)0.0239 (8)
C20.7586 (4)0.8723 (3)0.0850 (6)0.0232 (7)
C30.9054 (4)0.8646 (3)0.1462 (6)0.0255 (8)
H30.95950.80470.14220.031*
C40.9519 (4)0.9668 (3)0.2143 (6)0.0246 (8)
C51.0964 (4)1.0103 (3)0.2981 (6)0.0264 (8)
H4W0.678 (12)0.232 (9)0.182 (18)0.19 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0135 (4)0.0169 (4)0.0356 (4)0.0024 (2)0.0049 (3)0.0001 (3)
O10.0156 (13)0.0203 (13)0.0522 (17)0.0011 (10)0.0046 (11)−0.0035 (12)
O20.0203 (14)0.0210 (14)0.0535 (18)0.0006 (10)0.0031 (12)−0.0062 (12)
O30.0198 (15)0.0342 (16)0.066 (2)0.0006 (12)0.0106 (14)−0.0041 (15)
O40.0207 (14)0.0269 (15)0.0568 (19)−0.0042 (11)0.0048 (13)−0.0063 (13)
O50.0292 (16)0.0418 (17)0.0443 (16)0.0129 (13)0.0143 (13)0.0130 (14)
O60.041 (2)0.0318 (19)0.124 (4)0.0026 (15)0.014 (2)−0.010 (2)
N10.0136 (15)0.0210 (15)0.0344 (17)0.0010 (12)0.0041 (12)−0.0024 (12)
N20.0159 (15)0.0154 (14)0.0379 (17)−0.0022 (12)0.0059 (13)−0.0025 (13)
C10.0170 (17)0.0197 (18)0.0327 (19)−0.0005 (14)0.0047 (15)−0.0014 (14)
C20.0167 (17)0.0185 (17)0.0329 (19)−0.0012 (14)0.0056 (15)−0.0014 (14)
C30.0171 (17)0.0183 (18)0.039 (2)0.0018 (13)0.0066 (15)−0.0005 (15)
C40.0154 (17)0.0236 (18)0.0336 (19)0.0010 (14)0.0064 (14)0.0008 (15)
C50.0205 (19)0.0238 (19)0.033 (2)−0.0021 (14)0.0065 (16)0.0010 (15)

Geometric parameters (Å, °)

Co1—O5i2.065 (3)O5—H2W0.8277
Co1—O52.065 (3)O6—H3W0.8380
Co1—N12.108 (3)O6—H4W0.85 (11)
Co1—N1i2.108 (3)N1—N21.336 (4)
Co1—O1i2.120 (3)N1—C21.349 (5)
Co1—O12.120 (3)N2—C41.358 (5)
O1—C11.262 (5)N2—H20.8600
O2—C11.256 (5)C1—C21.495 (5)
O3—C51.209 (5)C2—C31.400 (5)
O4—C51.306 (5)C3—C41.386 (5)
O4—H40.8200C3—H30.9300
O5—H1W0.8288C4—C51.481 (5)
O5i—Co1—O5180N2—N1—C2106.3 (3)
O5i—Co1—N189.16 (12)N2—N1—Co1138.6 (3)
O5—Co1—N190.84 (12)C2—N1—Co1114.8 (2)
O5i—Co1—N1i90.84 (12)N1—N2—C4110.9 (3)
O5—Co1—N1i89.16 (12)N1—N2—H2124.6
N1—Co1—N1i180C4—N2—H2124.6
O5i—Co1—O1i88.82 (12)O2—C1—O1124.1 (3)
O5—Co1—O1i91.18 (12)O2—C1—C2119.7 (3)
N1—Co1—O1i103.22 (11)O1—C1—C2116.2 (3)
N1i—Co1—O1i76.78 (11)N1—C2—C3110.7 (3)
O5i—Co1—O191.18 (12)N1—C2—C1114.8 (3)
O5—Co1—O188.82 (12)C3—C2—C1134.5 (3)
N1—Co1—O176.78 (11)C4—C3—C2104.3 (3)
N1i—Co1—O1103.22 (11)C4—C3—H3127.9
O1i—Co1—O1180C2—C3—H3127.9
C1—O1—Co1116.9 (2)N2—C4—C3107.9 (3)
C5—O4—H4109.5N2—C4—C5121.6 (3)
Co1—O5—H1W121.4C3—C4—C5130.6 (3)
Co1—O5—H2W119.8O3—C5—O4125.8 (4)
H1W—O5—H2W111.9O3—C5—C4122.5 (3)
H3W—O6—H4W95.7O4—C5—C4111.7 (3)
O5i—Co1—O1—C192.3 (3)Co1—N1—C2—C3174.1 (3)
O5—Co1—O1—C1−87.7 (3)N2—N1—C2—C1−179.5 (3)
N1—Co1—O1—C13.4 (3)Co1—N1—C2—C1−5.3 (4)
N1i—Co1—O1—C1−176.6 (3)O2—C1—C2—N1−171.3 (4)
O5i—Co1—N1—N281.6 (4)O1—C1—C2—N18.3 (5)
O5—Co1—N1—N2−98.4 (4)O2—C1—C2—C39.5 (7)
O1i—Co1—N1—N2−6.9 (4)O1—C1—C2—C3−170.8 (4)
O1—Co1—N1—N2173.1 (4)N1—C2—C3—C40.1 (4)
O5i—Co1—N1—C2−90.0 (3)C1—C2—C3—C4179.3 (4)
O5—Co1—N1—C290.0 (3)N1—N2—C4—C3−0.1 (4)
O1i—Co1—N1—C2−178.6 (3)N1—N2—C4—C5179.8 (3)
O1—Co1—N1—C21.4 (3)C2—C3—C4—N20.0 (4)
C2—N1—N2—C40.2 (4)C2—C3—C4—C5−179.9 (4)
Co1—N1—N2—C4−171.9 (3)N2—C4—C5—O3−178.0 (4)
Co1—O1—C1—O2172.5 (3)C3—C4—C5—O31.9 (7)
Co1—O1—C1—C2−7.2 (4)N2—C4—C5—O42.7 (5)
N2—N1—C2—C3−0.2 (4)C3—C4—C5—O4−177.4 (4)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O2ii0.821.732.535 (4)169
O5—H1W···O3iii0.832.072.887 (4)171
O5—H2W···O2iv0.831.912.726 (4)171
O6—H4W···O1v0.85 (11)2.06 (11)2.828 (5)149 (10)
O6—H3W···O3vi0.842.302.932 (5)132
N2—H2···O6vii0.861.912.714 (5)155

Symmetry codes: (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) x, −y+3/2, z+1/2; (v) −x+1, −y+1, −z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2869).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Frisch, M. & Cahill, C. L. (2005). Dalton Trans. pp. 1518–1523. [PubMed]
  • King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem.42, 3492–3500. [PubMed]
  • King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861. [PubMed]
  • Li, X.-H., Lei, X.-X., Tian, Y.-G. & Wang, S. (2005). Acta Cryst. E61, m702–m704.
  • Pan, L., Ching, N., Huang, X.-Y. & Li, J. (2001). Chem. Eur. J.7, 4431–4437. [PubMed]
  • Pan, L., Frydel, T., Sander, M. B., Huang, X.-Y. & Li, J. (2001). Inorg. Chem.40, 1271–1283. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, H.-D., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m3119–m3121.
  • Xie, H.-D., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2007). Acta Cryst. E63, m1477–m1479.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography