PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1957.
Published online 2009 July 22. doi:  10.1107/S1600536809028189
PMCID: PMC2977333

5-Fluoro-3-methyl­sulfinyl-2-phenyl-1-benzofuran

Abstract

In the title compound, C15H11FO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The 2-phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 32.1 (2)°. The crystal structure is stabilized by aromatic π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.690 (5) Å]. In addition, the crystal structure exhibits inter­molecular C—H(...)O and C—H(...)F inter­actions.

Related literature

For the crystal structures of similar 5-halo-3-methyl­sulfinyl-2-phenyl-1-benzofuran derivatives, see: Choi et al. (2007a [triangle],b [triangle]). For the biological and pharmacological activity of benzofuran compounds, see: Howlett et al. (1999 [triangle]); Ward (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1957-scheme1.jpg

Experimental

Crystal data

  • C15H11FO2S
  • M r = 274.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1957-efi7.jpg
  • a = 8.507 (4) Å
  • b = 16.655 (7) Å
  • c = 9.553 (4) Å
  • β = 113.732 (5)°
  • V = 1239.1 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 273 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 8954 measured reflections
  • 2251 independent reflections
  • 1478 reflections with I > 2σ(I)
  • R int = 0.133

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.157
  • S = 1.07
  • 2251 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028189/er2071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028189/er2071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Dong-eui University (grant No. 2009AA099).

supplementary crystallographic information

Comment

The benzofuran ring systems have been received considerable attenttion in the field of their biological and pharmacological properties (Howlett et al., 1999; Ward, 1997). This work is related to our communications on the synthesis and structures of 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-bromo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 5-fluoro-3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (3) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the planes of the benzofuran and the phenyl rings is 3.690 (5)°. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the benzene rings of the adjacent molecules, with a Cg···Cg distance of 3.690 (5) Å (Cg is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) exhibits four C–H···O and an C–H···F intermolecular interactions (Table 1 and Fig. 2).

Experimental

The 77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-fluoro-3-methylsulfanyl-2-phenyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1 : 1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 462-463 K; Rf = 0.47 (hexane-ethyl acetate, 1 : 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5 Ueq(C) for methyl H atoms, respectively.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
π–π, C–H···O, and C–H···F interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 2, y - 1/2, ...

Crystal data

C15H11FO2SF(000) = 568
Mr = 274.30Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2317 reflections
a = 8.507 (4) Åθ = 2.5–26.7°
b = 16.655 (7) ŵ = 0.27 mm1
c = 9.553 (4) ÅT = 273 K
β = 113.732 (5)°Block, colourless
V = 1239.1 (9) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1478 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.133
graphiteθmax = 25.5°, θmin = 2.5°
Detector resolution: 10.0 pixels mm-1h = −10→10
[var phi] and ω scansk = −20→20
8954 measured reflectionsl = −11→11
2251 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.157H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0649P)2 + 1.1956P] where P = (Fo2 + 2Fc2)/3
2251 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.68313 (13)0.69115 (6)0.59163 (12)0.0254 (3)
F1.1429 (3)0.43327 (15)0.9193 (3)0.0410 (7)
O10.6667 (3)0.49692 (15)0.3511 (3)0.0239 (6)
O20.8646 (4)0.71756 (17)0.6700 (4)0.0382 (8)
C10.6897 (5)0.5933 (2)0.5247 (4)0.0195 (8)
C20.8108 (5)0.5306 (2)0.6026 (4)0.0212 (8)
C30.9321 (5)0.5180 (2)0.7509 (5)0.0255 (9)
H30.94900.55480.82890.031*
C41.0255 (5)0.4483 (3)0.7757 (5)0.0280 (9)
C51.0078 (5)0.3919 (2)0.6625 (5)0.0292 (10)
H51.07540.34580.68640.035*
C60.8909 (5)0.4045 (2)0.5168 (5)0.0275 (9)
H60.87770.36820.43880.033*
C70.7926 (5)0.4737 (2)0.4896 (4)0.0224 (8)
C80.6087 (5)0.5703 (2)0.3762 (4)0.0207 (8)
C90.4741 (5)0.6076 (2)0.2420 (4)0.0209 (8)
C100.4709 (5)0.5957 (3)0.0963 (5)0.0303 (10)
H100.55420.56400.08380.036*
C110.3445 (6)0.6311 (3)−0.0293 (5)0.0371 (11)
H110.34380.6236−0.12600.044*
C120.2182 (5)0.6779 (3)−0.0119 (5)0.0339 (10)
H120.13290.7016−0.09660.041*
C130.2205 (5)0.6887 (2)0.1312 (5)0.0269 (9)
H130.13530.71960.14280.032*
C140.3464 (5)0.6547 (2)0.2579 (5)0.0238 (9)
H140.34670.66310.35420.029*
C150.6122 (6)0.6672 (3)0.7391 (5)0.0403 (12)
H15A0.69210.63080.81040.060*
H15B0.50090.64260.69470.060*
H15C0.60550.71550.79140.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0240 (5)0.0220 (5)0.0278 (6)−0.0001 (4)0.0079 (4)−0.0029 (4)
F0.0295 (14)0.0525 (17)0.0367 (15)0.0104 (11)0.0086 (12)0.0157 (12)
O10.0211 (14)0.0263 (15)0.0259 (15)0.0005 (11)0.0112 (12)−0.0010 (11)
O20.0293 (17)0.0332 (17)0.048 (2)−0.0098 (13)0.0108 (15)−0.0085 (14)
C10.0155 (18)0.0189 (19)0.023 (2)0.0004 (14)0.0071 (16)0.0009 (15)
C20.0142 (19)0.026 (2)0.026 (2)−0.0018 (15)0.0110 (17)0.0027 (15)
C30.020 (2)0.031 (2)0.027 (2)−0.0018 (16)0.0115 (18)0.0017 (16)
C40.016 (2)0.040 (2)0.028 (2)0.0038 (17)0.0091 (18)0.0123 (18)
C50.027 (2)0.031 (2)0.039 (3)0.0073 (17)0.022 (2)0.0095 (18)
C60.028 (2)0.025 (2)0.036 (2)0.0015 (17)0.0193 (19)−0.0002 (17)
C70.020 (2)0.026 (2)0.026 (2)−0.0025 (15)0.0139 (18)0.0039 (16)
C80.021 (2)0.0170 (19)0.028 (2)0.0004 (15)0.0135 (17)0.0001 (15)
C90.0177 (19)0.023 (2)0.022 (2)−0.0030 (15)0.0075 (16)0.0018 (15)
C100.026 (2)0.040 (2)0.026 (2)0.0028 (18)0.0120 (19)−0.0037 (18)
C110.035 (3)0.053 (3)0.025 (2)0.000 (2)0.014 (2)0.000 (2)
C120.026 (2)0.037 (3)0.034 (3)−0.0002 (18)0.007 (2)0.0096 (18)
C130.016 (2)0.032 (2)0.034 (2)0.0027 (16)0.0114 (18)0.0044 (18)
C140.017 (2)0.029 (2)0.026 (2)−0.0027 (16)0.0107 (18)−0.0009 (16)
C150.047 (3)0.043 (3)0.044 (3)0.003 (2)0.033 (2)−0.008 (2)

Geometric parameters (Å, °)

S—O21.486 (3)C6—H60.9300
S—C11.760 (4)C8—C91.470 (5)
S—C151.786 (5)C9—C101.395 (5)
F—C41.357 (4)C9—C141.397 (5)
O1—C81.375 (4)C10—C111.380 (6)
O1—C71.381 (5)C10—H100.9300
C1—C81.358 (5)C11—C121.390 (6)
C1—C21.446 (5)C11—H110.9300
C2—C31.392 (5)C12—C131.372 (6)
C2—C71.398 (5)C12—H120.9300
C3—C41.373 (6)C13—C141.374 (5)
C3—H30.9300C13—H130.9300
C4—C51.393 (6)C14—H140.9300
C5—C61.363 (6)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.385 (5)C15—H15C0.9600
O2—S—C1106.19 (17)C1—C8—C9133.0 (3)
O2—S—C15106.3 (2)O1—C8—C9115.6 (3)
C1—S—C1598.6 (2)C10—C9—C14119.0 (4)
C8—O1—C7106.0 (3)C10—C9—C8120.4 (3)
C8—C1—C2106.9 (3)C14—C9—C8120.6 (3)
C8—C1—S124.3 (3)C11—C10—C9120.2 (4)
C2—C1—S127.0 (3)C11—C10—H10119.9
C3—C2—C7119.4 (4)C9—C10—H10119.9
C3—C2—C1135.7 (4)C10—C11—C12120.3 (4)
C7—C2—C1104.9 (3)C10—C11—H11119.8
C4—C3—C2116.3 (4)C12—C11—H11119.8
C4—C3—H3121.9C13—C12—C11119.4 (4)
C2—C3—H3121.9C13—C12—H12120.3
F—C4—C3118.0 (4)C11—C12—H12120.3
F—C4—C5117.8 (4)C12—C13—C14121.1 (4)
C3—C4—C5124.2 (4)C12—C13—H13119.5
C6—C5—C4119.7 (4)C14—C13—H13119.5
C6—C5—H5120.2C13—C14—C9120.0 (4)
C4—C5—H5120.2C13—C14—H14120.0
C5—C6—C7117.2 (4)C9—C14—H14120.0
C5—C6—H6121.4S—C15—H15A109.5
C7—C6—H6121.4S—C15—H15B109.5
O1—C7—C6126.1 (4)H15A—C15—H15B109.5
O1—C7—C2110.6 (3)S—C15—H15C109.5
C6—C7—C2123.3 (4)H15A—C15—H15C109.5
C1—C8—O1111.5 (3)H15B—C15—H15C109.5
O2—S—C1—C8−123.7 (3)C3—C2—C7—C6−0.5 (6)
C15—S—C1—C8126.4 (4)C1—C2—C7—C6177.9 (3)
O2—S—C1—C239.2 (4)C2—C1—C8—O10.4 (4)
C15—S—C1—C2−70.7 (4)S—C1—C8—O1166.2 (3)
C8—C1—C2—C3178.7 (4)C2—C1—C8—C9179.9 (4)
S—C1—C2—C313.4 (6)S—C1—C8—C9−14.3 (6)
C8—C1—C2—C70.6 (4)C7—O1—C8—C1−1.3 (4)
S—C1—C2—C7−164.6 (3)C7—O1—C8—C9179.1 (3)
C7—C2—C3—C4−0.8 (5)C1—C8—C9—C10147.8 (4)
C1—C2—C3—C4−178.6 (4)O1—C8—C9—C10−32.7 (5)
C2—C3—C4—F−178.9 (3)C1—C8—C9—C14−32.9 (6)
C2—C3—C4—C51.3 (6)O1—C8—C9—C14146.6 (3)
F—C4—C5—C6179.8 (3)C14—C9—C10—C110.8 (6)
C3—C4—C5—C6−0.4 (6)C8—C9—C10—C11−179.8 (4)
C4—C5—C6—C7−1.0 (6)C9—C10—C11—C12−0.8 (7)
C8—O1—C7—C6−177.6 (4)C10—C11—C12—C130.1 (7)
C8—O1—C7—C21.7 (4)C11—C12—C13—C140.6 (6)
C5—C6—C7—O1−179.3 (3)C12—C13—C14—C9−0.6 (6)
C5—C6—C7—C21.4 (6)C10—C9—C14—C13−0.1 (6)
C3—C2—C7—O1−179.9 (3)C8—C9—C14—C13−179.5 (3)
C1—C2—C7—O1−1.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.483.282 (5)145
C12—H12···O2ii0.932.483.371 (5)160
C13—H13···O2iii0.932.643.555 (5)170
C15—H15B···O1iv0.962.673.493 (6)144
C15—H15A···Fv0.962.623.509 (6)155

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x−1, y, z−1; (iii) x−1, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2071).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315–o1316.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3745.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ward, R. S. (1997). Nat. Prod. Rep 14, 43–74.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography