PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2017.
Published online 2009 July 29. doi:  10.1107/S1600536809029225
PMCID: PMC2977331

(E)-3-(2-Hydr­oxy-3-methoxy­benzyl­idene­amino)benzonitrile

Abstract

The mol­ecule of the title compound, C15H12N2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 30.46 (14)°. A strong intra­molecular O—H(...)O hydrogen bond stabilizes the mol­ecular structure.

Related literature

For the magnetic and biological properties of Schiff bases, see: May et al. (2004 [triangle]); Weber et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2017-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O2
  • M r = 252.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2017-efi1.jpg
  • a = 15.476 (5) Å
  • b = 5.9927 (19) Å
  • c = 15.413 (7) Å
  • β = 116.127 (3)°
  • V = 1283.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.973, T max = 0.991
  • 5235 measured reflections
  • 1470 independent reflections
  • 1808 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.124
  • S = 1.03
  • 1470 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029225/rz2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029225/rz2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years because these compounds play important role in coordination chemistry related to magnetism (Weber, et al., 2007) and biological process (May, et al.,2004). Our group is interested in the synthesis and characterization of Schiff base ligands. Here, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule displays a trans configuration about the central C=N double bond and adopts the phenol–imine tautomeric form, with a strong intramolecular O—H···O hydrogen bond (Table 1). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between two benzene rings is 30.46 (14)°. The crystal packing is stabilized only by van der Waals interactions.

Experimental

3-Aminobenzonitrile (0.59 g, 5 mmol) and 2-hydroxynaphthalene-1-carbaldehyde (0.760 g, 5 mmol) were dissolved in ethanol (25 ml). The resulting mixture was heated to reflux for 5 h, then cooled to room temperature. The solid obtained product was collected by filtration. Crystals suitable for X-ray diffraction studies were obtained on slow evaporation of the solvent at room temperature.

Refinement

All H atoms were located geometrically and treated as riding atoms, with O—H = 0.82 Å, C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for hydroxy and methyl H atoms. Due to lack of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.306 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1698 reflections
a = 15.476 (5) Åθ = 3.1–27.3°
b = 5.9927 (19) ŵ = 0.09 mm1
c = 15.413 (7) ÅT = 293 K
β = 116.127 (3)°Block, yellow
V = 1283.5 (8) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer1470 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
[var phi] and ω scansh = −20→20
Absorption correction: multi-scan (SADABS; Bruker,2000)k = −7→7
Tmin = 0.973, Tmax = 0.991l = −19→19
5235 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0766P)2] where P = (Fo2 + 2Fc2)/3
1470 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.49736 (19)0.0595 (4)0.27600 (18)0.0540 (6)
C20.3732 (2)−0.3128 (5)0.1960 (2)0.0509 (7)
O10.37225 (17)−0.2232 (4)0.27625 (16)0.0617 (6)
H1A0.3362−0.29590.29150.093*
C10.4293 (2)−0.2203 (5)0.1547 (2)0.0516 (8)
C30.3177 (2)−0.5039 (6)0.1545 (2)0.0549 (7)
C80.4899 (2)−0.0288 (5)0.1971 (2)0.0538 (7)
H8A0.52440.03220.16640.065*
C60.4292 (3)−0.3209 (6)0.0714 (2)0.0607 (8)
H6A0.4662−0.26020.04330.073*
C40.3194 (2)−0.5982 (6)0.0740 (2)0.0613 (9)
H4A0.2830−0.72520.04680.074*
O20.26595 (18)−0.5821 (4)0.20096 (17)0.0703 (7)
C90.5623 (2)0.2388 (5)0.3193 (2)0.0497 (7)
C110.5989 (2)0.5663 (5)0.4178 (2)0.0536 (8)
C100.5378 (2)0.3913 (5)0.3722 (2)0.0520 (7)
H10A0.48030.37580.37700.062*
C120.6857 (3)0.5916 (6)0.4126 (3)0.0623 (8)
H12A0.72670.70990.44340.075*
C50.3752 (2)−0.5055 (7)0.0327 (2)0.0663 (9)
H5A0.3754−0.5709−0.02190.080*
C70.2045 (3)−0.7693 (6)0.1576 (3)0.0754 (11)
H7A0.1716−0.80940.19550.113*
H7B0.2425−0.89330.15490.113*
H7C0.1583−0.73090.09340.113*
C130.7098 (3)0.4369 (6)0.3605 (2)0.0641 (9)
H13A0.76780.45130.35650.077*
C140.6495 (2)0.2616 (6)0.3144 (2)0.0583 (8)
H14A0.66700.15830.28000.070*
C150.5744 (3)0.7276 (6)0.4731 (2)0.0616 (9)
N20.5552 (3)0.8546 (6)0.5162 (3)0.0899 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0569 (15)0.0522 (14)0.0546 (13)0.0032 (12)0.0259 (11)−0.0012 (11)
C20.0500 (17)0.0543 (17)0.0498 (16)0.0108 (14)0.0231 (14)−0.0003 (13)
O10.0663 (14)0.0705 (14)0.0604 (12)−0.0002 (11)0.0389 (11)−0.0077 (11)
C10.0483 (17)0.0575 (19)0.0494 (16)0.0080 (13)0.0218 (14)−0.0031 (13)
C30.0488 (18)0.0570 (19)0.0581 (18)0.0041 (15)0.0226 (14)−0.0006 (15)
C80.0562 (18)0.0572 (18)0.0514 (16)0.0041 (15)0.0266 (14)−0.0009 (14)
C60.0557 (18)0.076 (2)0.0547 (17)−0.0003 (17)0.0283 (15)−0.0140 (16)
C40.057 (2)0.059 (2)0.0614 (19)0.0009 (16)0.0197 (16)−0.0090 (15)
O20.0728 (16)0.0706 (16)0.0700 (14)−0.0105 (13)0.0336 (12)−0.0020 (11)
C90.0571 (19)0.0498 (18)0.0434 (14)0.0009 (14)0.0234 (14)0.0012 (12)
C110.062 (2)0.0524 (18)0.0500 (16)0.0002 (14)0.0278 (15)0.0015 (12)
C100.0583 (19)0.0550 (18)0.0480 (15)−0.0007 (15)0.0281 (14)0.0001 (13)
C120.061 (2)0.066 (2)0.0612 (18)−0.0053 (18)0.0280 (16)0.0001 (16)
C50.063 (2)0.078 (2)0.0588 (18)0.0064 (19)0.0274 (17)−0.0169 (17)
C70.067 (2)0.061 (2)0.087 (3)−0.0073 (19)0.023 (2)0.0085 (19)
C130.055 (2)0.077 (2)0.0641 (19)0.0004 (18)0.0303 (17)0.0022 (17)
C140.062 (2)0.061 (2)0.0599 (18)0.0086 (16)0.0333 (17)−0.0002 (14)
C150.069 (2)0.062 (2)0.0601 (18)−0.0129 (16)0.0340 (17)−0.0106 (16)
N20.103 (3)0.091 (2)0.097 (2)−0.026 (2)0.063 (2)−0.037 (2)

Geometric parameters (Å, °)

N1—C81.284 (4)C9—C101.383 (4)
N1—C91.421 (4)C9—C141.391 (5)
C2—O11.354 (4)C11—C101.379 (4)
C2—C11.397 (4)C11—C121.389 (5)
C2—C31.405 (5)C11—C151.445 (5)
O1—H1A0.8200C10—H10A0.9300
C1—C61.418 (4)C12—C131.381 (5)
C1—C81.444 (5)C12—H12A0.9300
C3—O21.371 (4)C5—H5A0.9300
C3—C41.374 (5)C7—H7A0.9600
C8—H8A0.9300C7—H7B0.9600
C6—C51.356 (5)C7—H7C0.9600
C6—H6A0.9300C13—C141.377 (5)
C4—C51.393 (5)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9300
O2—C71.432 (4)C15—N21.134 (4)
C8—N1—C9120.4 (3)C10—C11—C15120.7 (3)
O1—C2—C1121.2 (3)C12—C11—C15118.2 (3)
O1—C2—C3119.3 (3)C9—C10—C11119.9 (3)
C1—C2—C3119.5 (3)C9—C10—H10A120.0
C2—O1—H1A109.5C11—C10—H10A120.0
C2—C1—C6119.4 (3)C13—C12—C11118.4 (3)
C2—C1—C8121.3 (3)C13—C12—H12A120.8
C6—C1—C8119.3 (3)C11—C12—H12A120.8
O2—C3—C4125.4 (3)C6—C5—C4120.7 (3)
O2—C3—C2114.9 (3)C6—C5—H5A119.7
C4—C3—C2119.7 (3)C4—C5—H5A119.7
N1—C8—C1121.7 (3)O2—C7—H7A109.5
N1—C8—H8A119.2O2—C7—H7B109.5
C1—C8—H8A119.2H7A—C7—H7B109.5
C5—C6—C1120.0 (3)O2—C7—H7C109.5
C5—C6—H6A120.0H7A—C7—H7C109.5
C1—C6—H6A120.0H7B—C7—H7C109.5
C3—C4—C5120.7 (3)C14—C13—C12121.1 (3)
C3—C4—H4A119.7C14—C13—H13A119.5
C5—C4—H4A119.7C12—C13—H13A119.5
C3—O2—C7116.4 (3)C13—C14—C9120.1 (3)
C10—C9—C14119.4 (3)C13—C14—H14A120.0
C10—C9—N1117.1 (3)C9—C14—H14A120.0
C14—C9—N1123.4 (3)N2—C15—C11179.8 (4)
C10—C11—C12121.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.182.645 (4)117

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2356).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography