PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1936.
Published online 2009 July 18. doi:  10.1107/S1600536809025781
PMCID: PMC2977330

4-Bromo-2-(4-fluoro­benzyl­idene)indan-1-one

Abstract

In the mol­ecule of the title compound, C16H10BrFO, the indane ring system is planar with a maximum deviation of 0.020 (3) Å. An intra­molecular C—H(...)O inter­action results in the formation of a planar ring, which is oriented at dihedral angles of 2.24 (3) and 2.34 (3)° with respect to the adjacent rings. π–π contacts between the benzene and indane rings [centroid–centroid distances = 3.699 (1) and 3.786 (1)Å] may stabilize the crystal structure.

Related literature

For a related structure, see: Deeni & Ravi (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1936-scheme1.jpg

Experimental

Crystal data

  • C16H10BrFO
  • M r = 317.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1936-efi1.jpg
  • a = 7.3580 (15) Å
  • b = 7.4630 (15) Å
  • c = 13.140 (3) Å
  • α = 101.45 (3)°
  • β = 96.80 (3)°
  • γ = 111.72 (3)°
  • V = 642.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.20 mm−1
  • T = 294 K
  • 0.10 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.740, T max = 0.856
  • 2518 measured reflections
  • 2319 independent reflections
  • 1351 reflections with I > 2σ(I)
  • R int = 0.027
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.137
  • S = 1.00
  • 2319 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025781/hk2723sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025781/hk2723Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of 2,3-dihydro-1H-inden-1-one alcohol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15) are, of course, planar and the dihedral angles between them are A/B = 4.49 (3), A/C = 5.44 (3) and B/C = 0.96 (3) °. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar ring (O/C3/C4/C7-C9/H3A), which is oriented with respect to the adjacent rings A and B at dihedral angles of 2.24 (3) and 2.34 (3) °, respectively. The indane ring system is planar with a maximum deviation of -0.020 (3) Å for atom C9. Atoms Br, O and C7 are 0.026 (3), -0.066 (3) and 0.075 (3) Å away from the plane of the indane ring system, respectively.

In the crystal structure, the π–π contacts between the benzene and the indane rings, Cg2—Cg1i and Cg1—Cg3ii [symmetry codes: (i) 1 - x, 2 - y, -z, (ii) 1 - x, 1 - y, -z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C1-C6), B (C8-C10/C15/C16) and C (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.699 (1) and 3.786 (1) Å, respectively.

Experimental

4-fluoro-benzaldehyde (10 mmol), 4-bromo-2,3-dihydro-1H-inden-1-one (10 mmol), anhydrous ethanol (10 ml) and 5 drops of piperidine were mixed in a three necked flask (50 ml). The flask was placed in a microwave synthesis system and irradiated for 7 min at 373 K with power 400 W. Then, the reaction mixture was slowly added with shaking to water (100 ml) and left to stand overnight. The precipitate was filtered, washed with water and dried (Deeni & Ravi, 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H10BrFOZ = 2
Mr = 317.15F(000) = 316
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3580 (15) ÅCell parameters from 25 reflections
b = 7.4630 (15) Åθ = 9–13°
c = 13.140 (3) ŵ = 3.20 mm1
α = 101.45 (3)°T = 294 K
β = 96.80 (3)°Block, colorless
γ = 111.72 (3)°0.10 × 0.10 × 0.05 mm
V = 642.2 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer1351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = −8→8
Tmin = 0.740, Tmax = 0.856l = −15→15
2518 measured reflections3 standard reflections every 120 min
2319 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.067P)2] where P = (Fo2 + 2Fc2)/3
2319 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.47010 (11)0.25337 (12)0.59830 (5)0.0759 (3)
O0.2276 (6)0.2064 (7)1.0423 (3)0.0688 (12)
F0.8344 (6)0.2939 (6)1.4682 (2)0.0883 (12)
C10.7931 (11)0.2919 (9)1.3633 (4)0.0618 (17)
C20.6046 (11)0.2666 (9)1.3199 (4)0.0657 (18)
H2A0.50710.25161.36040.079*
C30.5620 (9)0.2638 (9)1.2136 (4)0.0558 (16)
H3A0.43480.24751.18230.067*
C40.7092 (9)0.2854 (8)1.1535 (4)0.0483 (14)
C50.8976 (9)0.3109 (9)1.2025 (4)0.0586 (16)
H5A0.99790.32721.16390.070*
C60.9387 (10)0.3124 (9)1.3084 (5)0.0678 (18)
H6A1.06480.32731.34070.081*
C70.6811 (9)0.2884 (8)1.0409 (4)0.0543 (15)
H7A0.79860.31461.01560.065*
C80.5240 (8)0.2619 (8)0.9659 (4)0.0467 (14)
C90.3131 (9)0.2200 (8)0.9680 (4)0.0497 (15)
C100.2123 (9)0.1972 (8)0.8595 (4)0.0449 (13)
C110.0132 (10)0.1497 (9)0.8219 (4)0.0621 (17)
H11A−0.07770.12540.86630.075*
C12−0.0493 (10)0.1387 (9)0.7156 (4)0.0642 (17)
H12A−0.18270.10930.68860.077*
C130.0868 (10)0.1714 (9)0.6507 (4)0.0607 (17)
H13A0.04420.16460.58000.073*
C140.2830 (10)0.2135 (8)0.6883 (4)0.0510 (15)
C150.3494 (9)0.2285 (8)0.7946 (4)0.0474 (14)
C160.5512 (8)0.2711 (9)0.8538 (4)0.0515 (15)
H16A0.64600.40250.85380.062*
H16B0.59870.17200.82280.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0960 (6)0.1065 (6)0.0373 (4)0.0458 (5)0.0289 (3)0.0263 (3)
O0.063 (3)0.110 (4)0.033 (2)0.030 (3)0.0189 (19)0.022 (2)
F0.117 (3)0.104 (3)0.0362 (19)0.036 (3)0.0016 (19)0.0279 (19)
C10.085 (5)0.061 (4)0.029 (3)0.022 (4)0.000 (3)0.011 (3)
C20.087 (5)0.075 (5)0.034 (3)0.029 (4)0.016 (3)0.018 (3)
C30.063 (4)0.070 (4)0.033 (3)0.028 (4)0.005 (3)0.011 (3)
C40.058 (4)0.048 (4)0.033 (3)0.017 (3)0.008 (3)0.008 (3)
C50.055 (4)0.068 (4)0.041 (3)0.017 (3)0.003 (3)0.009 (3)
C60.069 (5)0.078 (5)0.050 (4)0.027 (4)−0.005 (3)0.019 (3)
C70.060 (4)0.064 (4)0.035 (3)0.020 (3)0.015 (3)0.013 (3)
C80.052 (4)0.058 (4)0.028 (3)0.020 (3)0.013 (3)0.010 (3)
C90.063 (4)0.055 (4)0.031 (3)0.023 (3)0.017 (3)0.008 (3)
C100.053 (4)0.052 (4)0.032 (3)0.024 (3)0.009 (3)0.010 (2)
C110.066 (5)0.081 (5)0.041 (3)0.032 (4)0.017 (3)0.015 (3)
C120.063 (4)0.087 (5)0.047 (4)0.040 (4)0.004 (3)0.010 (3)
C130.077 (5)0.084 (5)0.031 (3)0.045 (4)0.007 (3)0.016 (3)
C140.077 (5)0.055 (4)0.028 (3)0.033 (3)0.015 (3)0.011 (3)
C150.068 (4)0.042 (3)0.031 (3)0.023 (3)0.009 (3)0.005 (2)
C160.060 (4)0.060 (4)0.030 (3)0.018 (3)0.016 (3)0.011 (3)

Geometric parameters (Å, °)

Br—C141.898 (6)C8—C91.470 (8)
O—C91.224 (6)C8—C161.521 (7)
F—C11.371 (6)C9—C101.473 (7)
C1—C61.341 (9)C10—C111.375 (8)
C1—C21.365 (8)C10—C151.382 (7)
C2—C31.389 (7)C11—C121.394 (7)
C2—H2A0.9300C11—H11A0.9300
C3—C41.395 (8)C12—C131.376 (8)
C3—H3A0.9300C12—H12A0.9300
C4—C51.385 (7)C13—C141.364 (8)
C4—C71.476 (7)C13—H13A0.9300
C5—C61.385 (7)C14—C151.393 (7)
C5—H5A0.9300C15—C161.480 (7)
C6—H6A0.9300C16—H16A0.9700
C7—C81.352 (7)C16—H16B0.9700
C7—H7A0.9300
C6—C1—C2123.3 (5)C8—C9—C10107.1 (4)
C6—C1—F118.5 (6)C11—C10—C15122.0 (5)
C2—C1—F118.1 (6)C11—C10—C9128.3 (5)
C1—C2—C3118.3 (6)C15—C10—C9109.7 (5)
C1—C2—H2A120.9C10—C11—C12118.4 (6)
C3—C2—H2A120.9C10—C11—H11A120.8
C2—C3—C4120.3 (6)C12—C11—H11A120.8
C2—C3—H3A119.8C13—C12—C11119.9 (6)
C4—C3—H3A119.8C13—C12—H12A120.1
C5—C4—C3118.4 (5)C11—C12—H12A120.1
C5—C4—C7116.8 (5)C14—C13—C12121.2 (5)
C3—C4—C7124.7 (5)C14—C13—H13A119.4
C4—C5—C6120.9 (6)C12—C13—H13A119.4
C4—C5—H5A119.5C13—C14—C15119.9 (5)
C6—C5—H5A119.5C13—C14—Br121.3 (4)
C1—C6—C5118.7 (6)C15—C14—Br118.8 (5)
C1—C6—H6A120.7C10—C15—C14118.5 (5)
C5—C6—H6A120.7C10—C15—C16111.1 (4)
C8—C7—C4134.8 (5)C14—C15—C16130.3 (5)
C8—C7—H7A112.6C15—C16—C8104.5 (4)
C4—C7—H7A112.6C15—C16—H16A110.8
C7—C8—C9132.6 (5)C8—C16—H16A110.8
C7—C8—C16119.9 (5)C15—C16—H16B110.8
C9—C8—C16107.5 (4)C8—C16—H16B110.8
O—C9—C8129.6 (5)H16A—C16—H16B108.9
O—C9—C10123.4 (5)
C6—C1—C2—C3−0.6 (10)O—C9—C10—C15177.6 (5)
F—C1—C2—C3−179.8 (5)C8—C9—C10—C15−1.8 (6)
C1—C2—C3—C40.3 (9)C15—C10—C11—C12−1.8 (9)
C2—C3—C4—C5−0.5 (9)C9—C10—C11—C12179.1 (5)
C2—C3—C4—C7−178.8 (5)C10—C11—C12—C131.2 (9)
C3—C4—C5—C60.8 (9)C11—C12—C13—C140.4 (10)
C7—C4—C5—C6179.3 (5)C12—C13—C14—C15−1.4 (9)
C2—C1—C6—C51.0 (10)C12—C13—C14—Br178.7 (5)
F—C1—C6—C5−179.9 (5)C11—C10—C15—C140.8 (9)
C4—C5—C6—C1−1.1 (10)C9—C10—C15—C14180.0 (5)
C5—C4—C7—C8176.9 (6)C11—C10—C15—C16−178.2 (5)
C3—C4—C7—C8−4.8 (11)C9—C10—C15—C160.9 (7)
C4—C7—C8—C90.7 (12)C13—C14—C15—C100.9 (8)
C4—C7—C8—C16−178.4 (6)Br—C14—C15—C10−179.3 (4)
C7—C8—C9—O3.4 (11)C13—C14—C15—C16179.7 (6)
C16—C8—C9—O−177.5 (6)Br—C14—C15—C16−0.5 (8)
C7—C8—C9—C10−177.3 (6)C10—C15—C16—C80.2 (6)
C16—C8—C9—C101.9 (6)C14—C15—C16—C8−178.7 (5)
O—C9—C10—C11−3.3 (10)C7—C8—C16—C15178.0 (5)
C8—C9—C10—C11177.4 (6)C9—C8—C16—C15−1.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.142.972 (8)149

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2723).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Deeni, B. & Ravi, M. R. (2001). Tetrahedron Lett.42, 3025–3027.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography