PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m890.
Published online 2009 July 11. doi:  10.1107/S1600536809025653
PMCID: PMC2977329

Dibromido{2-[(4-bromo­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}zinc(II)

Abstract

In the title complex, [ZnBr2(C12H9BrN2)], the ZnII ion is in a distorted tetra­hedral coordination environment formed by two imine N atoms of the bis-chelating N-heterocyclic ligand and two Br atoms. The dihedral angle between the pyridine and benzene rings is 8.04 (17)°.

Related literature

For background information on diimine complexes, see: Small et al. (1998 [triangle]). For the use of imino­pyridine complexes as olefin polymerization catalysts, see: Ittel et al. (2000 [triangle]); Britovsek et al. (1999 [triangle]). For related structures, see Dehghanpour & Mahmoudi (2007 [triangle]); Dehghanpour et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m890-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C12H9BrN2)]
  • M r = 486.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m890-efi1.jpg
  • a = 7.7506 (13) Å
  • b = 8.7413 (16) Å
  • c = 10.9846 (18) Å
  • α = 89.966 (5)°
  • β = 72.182 (6)°
  • γ = 88.665 (6)°
  • V = 708.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 10.18 mm−1
  • T = 100 K
  • 0.28 × 0.16 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2005 [triangle]) T min = 0.153, T max = 0.293
  • 7668 measured reflections
  • 3230 independent reflections
  • 2703 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.095
  • S = 1.00
  • 3230 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 2.06 e Å−3
  • Δρmin = −1.70 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025653/lh2845sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025653/lh2845Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK acknowledges the Islamic Azad University Research Council for partial support of this work.

supplementary crystallographic information

Comment

Complexes of iminopyridines with late transition metals have recently found a renewal of interest (Small et al., 1998). The unexpected and recent discovery that such complexes in particular the imiopyridine iron(II) and cobalt (II) complexes, may act as active catalysts for olefine polymerization render them more attractive for chemists (Ittel et al., 2000; Britovsek et al., 1999). The title complex, (I), Fig. 1, was prepared by the reaction of ZnBr2 with the potentially bidentate ligand (4-bromophenyl)pyridin-2-ylmethyleneamine.

As might be expected for a four-coordinated zinc(II) complex, the metal center has a tetrahedral coordination environment. However, there are signficant distortions mainly due to the presence of the 5-membered chelate cycle: the endocyclic N1—Zn1—N2 angle [80.62 (18)°] is much narrower than the ideal tetrahedral angle of 109.5°, whereas the N1—Zn1—Br1 angle [119.57 (13)°] is much wider than the ideal tetrahedral angle. The Zn—Br and Zn—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of zinc bromide (Dehghanpour & Mahmoudi, 2007; Dehghanpour et al., 2007).

Experimental

The title complex was prepared by the reaction of ZnBr2 and (4-bromophenyl)pyridin-2-ylmethyleneamine (molar ratio 1:1) in acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave colourless crystals of (I) in 84% yield. Calc. for C12H9Br3N2Zn: C 29.64, H 1.87, N 5.76%; found: C 29.68, H 1.89, N 5.74%.

Refinement

All hydrogen atoms were placed in geometrically calculated positions with C-H = 0.93Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) There is a high positive residual density of 2.06 e Å-3 near the atom Br2 (distance 0.88%A).

Figures

Fig. 1.
Molecular structure of (I) showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.

Crystal data

[ZnBr2(C12H9BrN2)]Z = 2
Mr = 486.31F(000) = 460
Triclinic, P1Dx = 2.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7506 (13) ÅCell parameters from 469 reflections
b = 8.7413 (16) Åθ = 2.1–21.4°
c = 10.9846 (18) ŵ = 10.18 mm1
α = 89.966 (5)°T = 100 K
β = 72.182 (6)°Prism, colourless
γ = 88.665 (6)°0.28 × 0.16 × 0.12 mm
V = 708.3 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3230 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
graphiteRint = 0.066
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = −10→10
Absorption correction: multi-scan (APEX2; Bruker, 2005)k = −11→11
Tmin = 0.153, Tmax = 0.293l = −14→14
7668 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.02P)2 + 5.8P] where P = (Fo2 + 2Fc2)/3
3230 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 2.06 e Å3
0 restraintsΔρmin = −1.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.60716 (8)0.80440 (7)0.65671 (6)0.01457 (15)
Br10.37048 (7)0.65625 (6)0.63756 (5)0.01697 (13)
Br20.81619 (8)0.67009 (7)0.73568 (6)0.02353 (15)
Br31.15053 (7)0.69529 (6)−0.03171 (5)0.01971 (14)
N10.5509 (6)1.0180 (5)0.7411 (4)0.0161 (9)
N20.7495 (6)0.9383 (5)0.5020 (4)0.0135 (9)
C10.6485 (7)1.1285 (6)0.6650 (5)0.0142 (10)
C20.6414 (7)1.2794 (6)0.7039 (5)0.0175 (11)
H20.71161.35220.65050.021*
C30.5270 (8)1.3201 (7)0.8248 (5)0.0193 (11)
H30.51811.42120.85300.023*
C40.4275 (7)1.2091 (7)0.9018 (6)0.0205 (12)
H40.35101.23390.98300.025*
C50.4428 (7)1.0584 (7)0.8567 (5)0.0188 (11)
H50.37520.98360.90930.023*
C60.7597 (7)1.0777 (6)0.5374 (5)0.0154 (10)
H60.83691.14520.48240.018*
C70.8461 (7)0.8856 (6)0.3766 (5)0.0150 (10)
C80.9339 (7)0.9837 (7)0.2784 (5)0.0181 (11)
H80.93091.08840.29410.022*
C91.0255 (7)0.9271 (6)0.1580 (5)0.0164 (11)
H91.08580.99290.09310.020*
C101.0264 (7)0.7708 (6)0.1348 (5)0.0156 (11)
C110.9348 (7)0.6706 (6)0.2296 (5)0.0173 (11)
H110.93360.56660.21250.021*
C120.8446 (7)0.7298 (6)0.3514 (5)0.0171 (11)
H120.78290.66440.41600.020*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0158 (3)0.0090 (3)0.0168 (3)−0.0017 (2)−0.0018 (2)−0.0003 (2)
Br10.0164 (3)0.0128 (3)0.0203 (3)−0.00344 (19)−0.0032 (2)−0.0010 (2)
Br20.0240 (3)0.0125 (3)0.0378 (4)−0.0022 (2)−0.0148 (2)0.0031 (2)
Br30.0235 (3)0.0160 (3)0.0157 (3)−0.0026 (2)0.0000 (2)−0.0042 (2)
N10.016 (2)0.013 (2)0.018 (2)0.0013 (17)−0.0022 (17)−0.0008 (18)
N20.014 (2)0.010 (2)0.015 (2)0.0001 (16)−0.0027 (17)0.0004 (17)
C10.014 (2)0.009 (2)0.020 (3)−0.0001 (19)−0.006 (2)0.001 (2)
C20.019 (3)0.011 (3)0.023 (3)0.000 (2)−0.007 (2)−0.001 (2)
C30.027 (3)0.011 (3)0.020 (3)0.000 (2)−0.007 (2)−0.006 (2)
C40.019 (3)0.022 (3)0.018 (3)0.001 (2)−0.002 (2)−0.008 (2)
C50.017 (3)0.017 (3)0.019 (3)−0.001 (2)0.000 (2)0.000 (2)
C60.014 (2)0.014 (3)0.017 (3)−0.001 (2)−0.004 (2)0.000 (2)
C70.012 (2)0.015 (3)0.017 (3)−0.0015 (19)−0.0029 (19)−0.001 (2)
C80.019 (3)0.014 (3)0.018 (3)−0.004 (2)0.000 (2)−0.002 (2)
C90.021 (3)0.011 (3)0.015 (3)−0.004 (2)−0.002 (2)0.002 (2)
C100.016 (2)0.016 (3)0.012 (2)0.000 (2)−0.0002 (19)−0.003 (2)
C110.019 (3)0.010 (3)0.023 (3)−0.001 (2)−0.005 (2)−0.001 (2)
C120.021 (3)0.014 (3)0.013 (2)−0.005 (2)−0.001 (2)0.002 (2)

Geometric parameters (Å, °)

Zn1—N12.062 (5)C4—C51.397 (8)
Zn1—N22.094 (4)C4—H40.9300
Zn1—Br12.3310 (8)C5—H50.9300
Zn1—Br22.3507 (9)C6—H60.9300
Br3—C101.898 (5)C7—C121.391 (8)
N1—C51.333 (7)C7—C81.392 (8)
N1—C11.361 (7)C8—C91.382 (7)
N2—C61.291 (7)C8—H80.9300
N2—C71.422 (7)C9—C101.389 (8)
C1—C21.381 (7)C9—H90.9300
C1—C61.466 (8)C10—C111.389 (8)
C2—C31.394 (8)C11—C121.399 (8)
C2—H20.9300C11—H110.9300
C3—C41.374 (8)C12—H120.9300
C3—H30.9300
N1—Zn1—N280.62 (18)N1—C5—C4122.3 (5)
N1—Zn1—Br1119.57 (13)N1—C5—H5118.9
N2—Zn1—Br1119.19 (13)C4—C5—H5118.9
N1—Zn1—Br2110.14 (13)N2—C6—C1119.3 (5)
N2—Zn1—Br2108.91 (12)N2—C6—H6120.3
Br1—Zn1—Br2113.95 (3)C1—C6—H6120.3
C5—N1—C1118.2 (5)C12—C7—C8119.4 (5)
C5—N1—Zn1129.7 (4)C12—C7—N2117.7 (5)
C1—N1—Zn1112.0 (3)C8—C7—N2122.8 (5)
C6—N2—C7121.6 (5)C9—C8—C7120.7 (5)
C6—N2—Zn1111.2 (4)C9—C8—H8119.6
C7—N2—Zn1126.7 (4)C7—C8—H8119.6
N1—C1—C2122.5 (5)C8—C9—C10119.2 (5)
N1—C1—C6115.5 (5)C8—C9—H9120.4
C2—C1—C6121.9 (5)C10—C9—H9120.4
C1—C2—C3118.6 (5)C9—C10—C11121.4 (5)
C1—C2—H2120.7C9—C10—Br3118.7 (4)
C3—C2—H2120.7C11—C10—Br3119.9 (4)
C4—C3—C2119.1 (5)C10—C11—C12118.5 (5)
C4—C3—H3120.4C10—C11—H11120.7
C2—C3—H3120.4C12—C11—H11120.7
C3—C4—C5119.2 (5)C7—C12—C11120.6 (5)
C3—C4—H4120.4C7—C12—H12119.7
C5—C4—H4120.4C11—C12—H12119.7
N2—Zn1—N1—C5175.0 (5)Zn1—N1—C5—C4176.4 (4)
Br1—Zn1—N1—C556.7 (5)C3—C4—C5—N10.0 (9)
Br2—Zn1—N1—C5−78.2 (5)C7—N2—C6—C1176.2 (5)
N2—Zn1—N1—C1−8.2 (4)Zn1—N2—C6—C1−11.5 (6)
Br1—Zn1—N1—C1−126.5 (3)N1—C1—C6—N24.8 (7)
Br2—Zn1—N1—C198.6 (4)C2—C1—C6—N2−174.1 (5)
N1—Zn1—N2—C610.6 (4)C6—N2—C7—C12172.5 (5)
Br1—Zn1—N2—C6129.4 (3)Zn1—N2—C7—C121.4 (7)
Br2—Zn1—N2—C6−97.6 (4)C6—N2—C7—C8−10.4 (8)
N1—Zn1—N2—C7−177.5 (4)Zn1—N2—C7—C8178.5 (4)
Br1—Zn1—N2—C7−58.8 (4)C12—C7—C8—C9−2.7 (8)
Br2—Zn1—N2—C774.3 (4)N2—C7—C8—C9−179.7 (5)
C5—N1—C1—C20.9 (8)C7—C8—C9—C101.2 (8)
Zn1—N1—C1—C2−176.3 (4)C8—C9—C10—C111.0 (8)
C5—N1—C1—C6−177.9 (5)C8—C9—C10—Br3179.3 (4)
Zn1—N1—C1—C64.8 (6)C9—C10—C11—C12−1.7 (8)
N1—C1—C2—C3−1.3 (8)Br3—C10—C11—C12−180.0 (4)
C6—C1—C2—C3177.5 (5)C8—C7—C12—C111.9 (8)
C1—C2—C3—C41.0 (8)N2—C7—C12—C11179.2 (5)
C2—C3—C4—C5−0.4 (9)C10—C11—C12—C70.2 (8)
C1—N1—C5—C4−0.2 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2845).

References

  • Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., Mctavish, S. J., Redshaw, C., Solan, G. A., Stromberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc.121, 8728–8740.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem.37, 35–40.
  • Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.
  • Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev.100, 1169–1205. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc.120, 4049–4050.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography