PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1960.
Published online 2009 July 22. doi:  10.1107/S1600536809027494
PMCID: PMC2977328

(4S,5S)-2-(4-Chloro­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

Abstract

The title compound, C11H11ClN2O4, is an important inter­mediate for the preparation of platinum anti­cancer drugs. The dioxolane ring adopts a twist conformation with an equatorially attached chloro­phenyl substituent. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (001) by N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For general background to platinum anti­cancer drugs, see: Kim et al. (1994 [triangle]); Pandey et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1960-scheme1.jpg

Experimental

Crystal data

  • C11H11ClN2O4
  • M r = 270.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1960-efi1.jpg
  • a = 9.2780 (19) Å
  • b = 4.7600 (10) Å
  • c = 13.245 (3) Å
  • β = 93.15 (3)°
  • V = 584.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.936, T max = 0.967
  • 2248 measured reflections
  • 2113 independent reflections
  • 1694 reflections with I > 2σ(I)
  • R int = 0.027
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.122
  • S = 1.07
  • 2113 reflections
  • 179 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 916 Friedel pairs
  • Flack parameter: 0.07 (14)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027494/ci2828sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027494/ci2828Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Platinum antitumor drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al.,1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dioxolane ring adopts a twist conformation and the chlorophenyl unit is equatorially attached.

In the crystal structure, N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) link the molecules to form a two-dimensional network (Fig. 2) parallel to the (001).

Experimental

4-Chlorobenzaldehyde (278 mg, 1.98 mmol), (2S,3S)-diethyltartrate (378 mg,1.84 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 4-methylbenzenesulfonic acid (30 mg) was added. The flask was fitted with a water-distributor. The mixture was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, and then transfered into a separatory funnel, washed with water (200 ml) and extracted with acetate (200 ml). The organic phase was distilled under pressure, and the residual was dissolved in anhydrous ethanol (50 ml). Then, a current of dry ammonia was passed through the reaction mixture at room temperature for about 4 h. The reaction mixture was then added dropwise to a vigorously stirred water (600 ml). The resulting colourless precipitate was obtained by filtration and dried in vacuo (Kim et al., 1994). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after two weeks.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included in the refinement in riding motion approximation, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H11ClN2O4F(000) = 280
Mr = 270.67Dx = 1.539 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.2780 (19) Åθ = 9–13°
b = 4.760 (1) ŵ = 0.34 mm1
c = 13.245 (3) ÅT = 293 K
β = 93.15 (3)°Block, colourless
V = 584.1 (2) Å30.20 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = −5→5
Tmin = 0.936, Tmax = 0.967l = −15→15
2248 measured reflections3 standard reflections every 200 reflections
2113 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0558P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2113 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = −0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 916 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.35368 (14)−0.0236 (4)−0.21514 (8)0.0925 (5)
O10.2854 (2)0.2859 (5)0.26692 (18)0.0475 (6)
O20.0917 (2)0.0071 (5)0.24181 (16)0.0461 (6)
O30.3515 (3)0.0218 (6)0.51614 (17)0.0568 (7)
O4−0.0323 (3)0.4727 (5)0.3827 (2)0.0657 (8)
N10.4522 (4)−0.0804 (9)0.3700 (3)0.0597 (10)
H1A0.516 (4)−0.168 (8)0.397 (3)0.038 (10)*
H1B0.451 (4)−0.069 (10)0.305 (3)0.064 (13)*
N2−0.1472 (4)0.0634 (7)0.3925 (3)0.0458 (7)
H2A−0.230 (4)0.139 (7)0.403 (2)0.034 (9)*
H2B−0.140 (5)−0.105 (12)0.399 (3)0.071 (15)*
C10.2948 (4)0.0470 (10)−0.0955 (3)0.0573 (10)
C20.3508 (5)−0.1037 (10)−0.0134 (3)0.0675 (12)
H20.4179−0.2455−0.02240.081*
C30.3072 (4)−0.0438 (10)0.0813 (3)0.0618 (10)
H30.3440−0.14760.13630.074*
C40.2085 (4)0.1701 (7)0.0964 (3)0.0467 (9)
C50.1527 (4)0.3126 (9)0.0133 (3)0.0614 (11)
H50.08520.45410.02160.074*
C60.1949 (5)0.2500 (11)−0.0830 (3)0.0701 (12)
H60.15490.3468−0.13870.084*
C70.1632 (4)0.2384 (7)0.1998 (3)0.0471 (8)
H70.10020.40380.19760.057*
C80.2436 (3)0.2201 (7)0.3666 (2)0.0392 (7)
H80.22640.39350.40390.047*
C90.1005 (3)0.0548 (7)0.3490 (2)0.0378 (7)
H90.1064−0.12480.38520.045*
C10−0.0327 (3)0.2166 (7)0.3777 (3)0.0395 (8)
C110.3560 (3)0.0449 (8)0.4236 (2)0.0423 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1056 (9)0.1139 (10)0.0597 (6)−0.0231 (10)0.0197 (6)−0.0196 (7)
O10.0522 (13)0.0425 (14)0.0473 (13)−0.0157 (11)−0.0015 (11)0.0055 (11)
O20.0474 (12)0.0375 (13)0.0539 (13)−0.0122 (12)0.0066 (10)−0.0116 (12)
O30.0565 (14)0.0719 (19)0.0423 (13)−0.0098 (15)0.0051 (11)0.0030 (14)
O40.0582 (15)0.0206 (12)0.120 (2)0.0031 (12)0.0207 (14)−0.0055 (15)
N10.055 (2)0.074 (3)0.050 (2)0.0199 (19)−0.0040 (17)−0.0013 (18)
N20.0402 (17)0.0289 (17)0.069 (2)0.0016 (14)0.0126 (14)0.0046 (14)
C10.057 (2)0.064 (3)0.051 (2)−0.019 (2)0.0029 (17)−0.008 (2)
C20.071 (3)0.065 (3)0.066 (3)0.011 (2)−0.003 (2)−0.019 (2)
C30.078 (3)0.058 (2)0.048 (2)0.012 (2)−0.0093 (18)−0.003 (2)
C40.049 (2)0.0377 (19)0.053 (2)−0.0036 (16)−0.0039 (17)−0.0016 (16)
C50.057 (2)0.061 (3)0.066 (3)0.009 (2)0.0015 (19)0.012 (2)
C60.073 (3)0.082 (3)0.055 (2)−0.005 (3)−0.006 (2)0.016 (2)
C70.049 (2)0.0352 (18)0.057 (2)0.0005 (17)−0.0044 (17)0.0031 (16)
C80.0428 (18)0.0303 (17)0.0450 (18)−0.0061 (15)0.0073 (15)−0.0031 (14)
C90.0388 (16)0.0245 (15)0.0500 (19)−0.0048 (14)0.0021 (14)−0.0002 (13)
C100.0395 (17)0.0312 (19)0.0479 (19)−0.0016 (15)0.0023 (15)0.0005 (15)
C110.0343 (16)0.045 (2)0.0475 (19)−0.0100 (16)0.0032 (14)−0.0074 (17)

Geometric parameters (Å, °)

Cl1—C11.738 (4)C2—C31.370 (5)
O1—C71.420 (4)C2—H20.93
O1—C81.431 (4)C3—C41.391 (5)
O2—C71.415 (4)C3—H30.93
O2—C91.436 (4)C4—C51.370 (5)
O3—C111.233 (4)C4—C71.490 (5)
O4—C101.221 (4)C5—C61.387 (6)
N1—C111.313 (5)C5—H50.93
N1—H1A0.79 (4)C6—H60.93
N1—H1B0.86 (4)C7—H70.98
N2—C101.312 (5)C8—C111.506 (5)
N2—H2A0.86 (3)C8—C91.550 (4)
N2—H2B0.81 (6)C8—H80.98
C1—C61.355 (6)C9—C101.522 (4)
C1—C21.379 (6)C9—H90.98
C7—O1—C8107.2 (2)C5—C6—H6120.2
C7—O2—C9105.3 (2)O2—C7—O1104.7 (3)
C11—N1—H1A120 (3)O2—C7—C4110.7 (3)
C11—N1—H1B123 (3)O1—C7—C4110.8 (3)
H1A—N1—H1B117 (4)O2—C7—H7110.2
C10—N2—H2A122 (2)O1—C7—H7110.2
C10—N2—H2B121 (3)C4—C7—H7110.2
H2A—N2—H2B117 (4)O1—C8—C11111.6 (3)
C6—C1—C2120.4 (4)O1—C8—C9104.2 (2)
C6—C1—Cl1120.0 (3)C11—C8—C9111.0 (3)
C2—C1—Cl1119.6 (3)O1—C8—H8109.9
C3—C2—C1119.7 (4)C11—C8—H8109.9
C3—C2—H2120.1C9—C8—H8109.9
C1—C2—H2120.1O2—C9—C10108.9 (2)
C2—C3—C4121.0 (4)O2—C9—C8103.3 (2)
C2—C3—H3119.5C10—C9—C8114.0 (3)
C4—C3—H3119.5O2—C9—H9110.1
C5—C4—C3118.0 (4)C10—C9—H9110.1
C5—C4—C7121.2 (3)C8—C9—H9110.1
C3—C4—C7120.9 (3)O4—C10—N2123.2 (3)
C4—C5—C6121.3 (4)O4—C10—C9121.2 (3)
C4—C5—H5119.4N2—C10—C9115.5 (3)
C6—C5—H5119.4O3—C11—N1123.9 (3)
C1—C6—C5119.7 (4)O3—C11—C8119.2 (3)
C1—C6—H6120.2N1—C11—C8116.9 (3)
C6—C1—C2—C3−1.3 (6)C3—C4—C7—O152.9 (5)
Cl1—C1—C2—C3178.4 (3)C7—O1—C8—C11134.7 (3)
C1—C2—C3—C4−0.9 (7)C7—O1—C8—C914.8 (3)
C2—C3—C4—C52.1 (6)C7—O2—C9—C1091.5 (3)
C2—C3—C4—C7−178.9 (4)C7—O2—C9—C8−30.0 (3)
C3—C4—C5—C6−1.2 (6)O1—C8—C9—O29.3 (3)
C7—C4—C5—C6179.8 (4)C11—C8—C9—O2−111.0 (3)
C2—C1—C6—C52.2 (6)O1—C8—C9—C10−108.7 (3)
Cl1—C1—C6—C5−177.5 (3)C11—C8—C9—C10130.9 (3)
C4—C5—C6—C1−1.0 (7)O2—C9—C10—O4−93.1 (4)
C9—O2—C7—O140.4 (3)C8—C9—C10—O421.7 (5)
C9—O2—C7—C4159.7 (3)O2—C9—C10—N284.4 (4)
C8—O1—C7—O2−34.2 (3)C8—C9—C10—N2−160.8 (3)
C8—O1—C7—C4−153.5 (3)O1—C8—C11—O3164.5 (3)
C5—C4—C7—O2116.2 (4)C9—C8—C11—O3−79.7 (4)
C3—C4—C7—O2−62.8 (4)O1—C8—C11—N1−17.0 (4)
C5—C4—C7—O1−128.1 (4)C9—C8—C11—N198.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.79 (4)2.20 (4)2.979 (5)166 (4)
N2—H2A···O3ii0.87 (4)2.42 (3)3.173 (5)145 (3)
N2—H2B···O4iii0.81 (6)2.26 (6)3.012 (4)155 (4)
C9—H9···O4iii0.982.313.075 (4)135

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y+1/2, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2828).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kim, D. K., Kim, G., Gam, J., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem.37, 1471–1485. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pandey, G., Hajara, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem.62, 5966–5973.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography