PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m861.
Published online 2009 July 1. doi:  10.1107/S160053680902443X
PMCID: PMC2977327

Aqua­chloridobis[5-(2-pyrid­yl)-1H-tetra­zolato-κN 1]iron(III)

Abstract

The title compound, [Fe(C6H4N5)2Cl(H2O)], was synthesized by hydro­thermal reaction of FeCl3 with 2-(1H-tetra­zol-5-yl)pyridine. The iron(III) metal centre exhibits a distorted octa­hedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetra­zole rings are nearly coplanar [dihedral angles = 4.32 (15) and 5.04 (14)°]. In the crystal structure, inter­molecular O—H(...)N hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (100).

Related literature

For physical properties such as permittivity, fluorescence, magnetism and optical properties of metal-organic coordination compounds, see: Fu et al. (2007 [triangle]); Huang et al. (1999 [triangle]); Liu et al. (1999 [triangle]); Xie et al. (2003 [triangle]); Zhang et al. (2000 [triangle], 2001 [triangle]). For the structure of a related tetra­zole compound, see: Fu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m861-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H4N5)2Cl(H2O)]
  • M r = 401.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m861-efi1.jpg
  • a = 17.072 (3) Å
  • b = 7.1905 (14) Å
  • c = 14.292 (3) Å
  • β = 113.85 (3)°
  • V = 1604.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 298 K
  • 0.15 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.867, T max = 0.894
  • 15693 measured reflections
  • 3678 independent reflections
  • 3226 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.080
  • S = 1.13
  • 3678 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902443X/rz2339sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902443X/rz2339Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The construction of metal-organic coordination compounds has attracted much attention owing to their potential propertiess, such as permittivity, fluorescence, magnetism and optical properties. (Fu et al., 2007; Huang et al., 1999; Liu et al., 1999; Xie et al., 2003; Zhang et al.,2001; Zhang et al.,2000). Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of their various coordination modes. (Fu et al., 2008). Herein the crystal structure of the title compound is reported.

In the title compound (Fig. 1), the distorted octahedral coordination geometry around the iron(III) metal centre is provided by four N atoms from two bidentate 2-(1H-tetrazol-5-yl)pyridine ligands, one water O atom and one chloride ion. The pyridine and tetrazole rings are nearly coplanar and only twisted by a dihedral angle of 4.32 (15) and 5.04 (14)°. The geometric parameters of the tetrazole rings are comparable to those observed in a related molecule (Fu et al., 2008). The water molecules are involved in intermolecular O—H···N hydrogen bonds (Table 1) generating a two-dimensional network (Fig. 2).

Experimental

A mixture of 2-(1H-tetrazol-5-yl)pyridine (0.2 mmol), FeCl3 (0.1 mmol), distilled water (1 ml) and a few drops of ethanol sealed in a glass tube was heated at 85 °C. Colourless block crystals suitable for X-ray analysis were obtained after 10 days.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map refined as riding, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the a axis, showing the two dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Fe(C6H4N5)2Cl(H2O)]F(000) = 812
Mr = 401.60Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3226 reflections
a = 17.072 (3) Åθ = 3.1–27.5°
b = 7.1905 (14) ŵ = 1.13 mm1
c = 14.292 (3) ÅT = 298 K
β = 113.85 (3)°Block, colourless
V = 1604.6 (7) Å30.15 × 0.10 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer3678 independent reflections
Radiation source: fine-focus sealed tube3226 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = −22→22
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.867, Tmax = 0.894l = −18→18
15693 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0265P)2 + 0.8976P] where P = (Fo2 + 2Fc2)/3
3678 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.244652 (16)0.52062 (4)0.23914 (2)0.02111 (9)
Cl10.23959 (4)0.25457 (8)0.15658 (4)0.04015 (15)
O1W0.24124 (9)0.4003 (2)0.36157 (10)0.0298 (3)
H1WA0.25590.26850.37330.045*
H1WB0.23460.46170.40650.045*
N60.10878 (10)0.5759 (2)0.17945 (13)0.0252 (4)
N20.26988 (10)0.7731 (2)0.32361 (13)0.0233 (3)
N10.38334 (10)0.5417 (2)0.30588 (13)0.0277 (4)
N40.28121 (13)1.0424 (2)0.39005 (15)0.0369 (5)
C110.07709 (12)0.6877 (3)0.09684 (15)0.0250 (4)
N100.13543 (12)0.8769 (3)−0.00850 (13)0.0332 (4)
N30.22568 (11)0.9153 (2)0.33720 (14)0.0310 (4)
N70.22328 (10)0.6973 (2)0.11379 (13)0.0260 (4)
N90.21594 (12)0.8912 (3)−0.00236 (14)0.0338 (4)
N80.26901 (11)0.7850 (3)0.07022 (14)0.0324 (4)
N50.36207 (12)0.9877 (3)0.41089 (16)0.0391 (5)
C50.41688 (12)0.6927 (3)0.36392 (16)0.0277 (4)
C60.35228 (13)0.8211 (3)0.36874 (15)0.0266 (4)
C120.14278 (13)0.7567 (3)0.06464 (15)0.0251 (4)
C10−0.00933 (13)0.7286 (3)0.04887 (17)0.0345 (5)
H10A−0.02990.8074−0.00750.041*
C40.50448 (14)0.7199 (4)0.41376 (19)0.0412 (6)
H4A0.52640.82610.45270.049*
C8−0.03227 (14)0.5360 (4)0.1706 (2)0.0419 (6)
H8A−0.06860.48230.19700.050*
C9−0.06443 (14)0.6492 (4)0.08684 (19)0.0403 (6)
H9A−0.12290.67290.05550.048*
C70.05448 (14)0.5021 (3)0.21553 (18)0.0370 (5)
H7A0.07610.42550.27280.044*
C30.55837 (15)0.5858 (4)0.4041 (2)0.0501 (7)
H3A0.61740.60060.43670.060*
C20.52448 (15)0.4307 (4)0.3465 (2)0.0524 (7)
H2A0.56020.33870.33980.063*
C10.43723 (15)0.4126 (4)0.2986 (2)0.0436 (6)
H1A0.41460.30680.25950.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.01986 (15)0.01999 (15)0.02244 (15)0.00008 (11)0.00748 (11)−0.00171 (11)
Cl10.0484 (3)0.0314 (3)0.0355 (3)0.0008 (2)0.0116 (3)−0.0137 (2)
O1W0.0454 (9)0.0204 (7)0.0275 (7)0.0062 (6)0.0188 (7)0.0003 (6)
N60.0206 (8)0.0261 (9)0.0284 (9)−0.0020 (7)0.0095 (7)0.0006 (7)
N20.0231 (8)0.0186 (8)0.0289 (9)0.0013 (6)0.0114 (7)−0.0012 (7)
N10.0222 (8)0.0314 (9)0.0288 (9)0.0024 (7)0.0095 (7)−0.0064 (7)
N40.0465 (11)0.0195 (9)0.0431 (11)0.0034 (8)0.0165 (9)−0.0044 (8)
C110.0244 (10)0.0242 (10)0.0260 (10)0.0006 (8)0.0098 (8)−0.0027 (8)
N100.0421 (11)0.0280 (10)0.0302 (9)0.0018 (8)0.0155 (8)0.0042 (8)
N30.0358 (10)0.0210 (9)0.0396 (10)0.0064 (7)0.0186 (8)0.0011 (8)
N70.0255 (8)0.0282 (9)0.0279 (9)−0.0033 (7)0.0145 (7)0.0021 (7)
N90.0472 (11)0.0292 (10)0.0319 (10)−0.0045 (8)0.0229 (9)0.0008 (8)
N80.0349 (10)0.0340 (10)0.0348 (10)−0.0060 (8)0.0210 (8)−0.0001 (8)
N50.0390 (11)0.0251 (10)0.0456 (12)−0.0034 (8)0.0094 (9)−0.0092 (8)
C50.0237 (10)0.0301 (11)0.0272 (10)−0.0002 (8)0.0080 (8)−0.0018 (9)
C60.0264 (10)0.0234 (10)0.0266 (10)−0.0021 (8)0.0071 (8)−0.0030 (8)
C120.0292 (10)0.0224 (10)0.0238 (10)−0.0002 (8)0.0108 (8)−0.0005 (8)
C100.0280 (11)0.0368 (12)0.0335 (12)0.0073 (9)0.0071 (9)0.0005 (10)
C40.0252 (11)0.0490 (15)0.0417 (13)−0.0075 (10)0.0056 (10)−0.0078 (11)
C80.0263 (11)0.0538 (16)0.0512 (15)−0.0093 (10)0.0214 (11)−0.0024 (12)
C90.0198 (10)0.0519 (16)0.0456 (14)0.0028 (10)0.0094 (10)−0.0113 (12)
C70.0292 (11)0.0443 (14)0.0401 (13)−0.0043 (10)0.0167 (10)0.0092 (11)
C30.0188 (11)0.078 (2)0.0485 (15)0.0031 (12)0.0083 (10)−0.0018 (14)
C20.0288 (12)0.0694 (19)0.0582 (17)0.0176 (12)0.0168 (12)−0.0098 (15)
C10.0325 (12)0.0460 (15)0.0503 (15)0.0093 (11)0.0146 (11)−0.0157 (12)

Geometric parameters (Å, °)

Fe1—O1W1.9737 (14)N7—C121.336 (3)
Fe1—N72.1041 (17)N7—N81.337 (2)
Fe1—N22.1256 (16)N9—N81.312 (3)
Fe1—N62.1602 (17)N5—C61.321 (3)
Fe1—N12.1708 (18)C5—C41.386 (3)
Fe1—Cl12.2308 (7)C5—C61.461 (3)
O1W—H1WA0.9774C10—C91.385 (3)
O1W—H1WB0.8241C10—H10A0.9300
N6—C71.339 (3)C4—C31.377 (4)
N6—C111.347 (3)C4—H4A0.9300
N2—N31.331 (2)C8—C91.366 (4)
N2—C61.334 (2)C8—C71.377 (3)
N1—C11.340 (3)C8—H8A0.9300
N1—C51.345 (3)C9—H9A0.9300
N4—N31.313 (3)C7—H7A0.9300
N4—N51.348 (3)C3—C21.368 (4)
C11—C101.384 (3)C3—H3A0.9300
C11—C121.461 (3)C2—C11.371 (3)
N10—C121.322 (3)C2—H2A0.9300
N10—N91.345 (3)C1—H1A0.9300
O1W—Fe1—N7164.20 (6)N8—N9—N10111.58 (17)
O1W—Fe1—N286.71 (6)N9—N8—N7107.23 (16)
N7—Fe1—N283.89 (7)C6—N5—N4103.55 (17)
O1W—Fe1—N691.08 (7)N1—C5—C4122.2 (2)
N7—Fe1—N676.34 (7)N1—C5—C6113.45 (17)
N2—Fe1—N690.32 (6)C4—C5—C6124.4 (2)
O1W—Fe1—N193.38 (7)N5—C6—N2111.68 (19)
N7—Fe1—N196.59 (7)N5—C6—C5129.50 (19)
N2—Fe1—N175.90 (6)N2—C6—C5118.81 (18)
N6—Fe1—N1165.22 (7)N10—C12—N7111.92 (18)
O1W—Fe1—Cl194.84 (5)N10—C12—C11129.17 (19)
N7—Fe1—Cl196.38 (5)N7—C12—C11118.91 (18)
N2—Fe1—Cl1171.26 (5)C11—C10—C9118.4 (2)
N6—Fe1—Cl198.24 (5)C11—C10—H10A120.8
N1—Fe1—Cl195.41 (5)C9—C10—H10A120.8
Fe1—O1W—H1WA118.7C3—C4—C5118.4 (2)
Fe1—O1W—H1WB121.3C3—C4—H4A120.8
H1WA—O1W—H1WB119.5C5—C4—H4A120.8
C7—N6—C11118.60 (17)C9—C8—C7119.3 (2)
C7—N6—Fe1125.09 (15)C9—C8—H8A120.3
C11—N6—Fe1116.26 (13)C7—C8—H8A120.3
N3—N2—C6106.24 (16)C8—C9—C10119.5 (2)
N3—N2—Fe1137.95 (13)C8—C9—H9A120.2
C6—N2—Fe1115.30 (13)C10—C9—H9A120.2
C1—N1—C5118.19 (19)N6—C7—C8122.1 (2)
C1—N1—Fe1125.34 (15)N6—C7—H7A118.9
C5—N1—Fe1116.35 (13)C8—C7—H7A118.9
N3—N4—N5111.16 (17)C2—C3—C4119.6 (2)
N6—C11—C10122.05 (19)C2—C3—H3A120.2
N6—C11—C12113.04 (17)C4—C3—H3A120.2
C10—C11—C12124.90 (19)C3—C2—C1119.2 (2)
C12—N10—N9103.34 (17)C3—C2—H2A120.4
N4—N3—N2107.37 (16)C1—C2—H2A120.4
C12—N7—N8105.94 (17)N1—C1—C2122.5 (2)
C12—N7—Fe1115.35 (13)N1—C1—H1A118.8
N8—N7—Fe1138.44 (14)C2—C1—H1A118.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4i0.981.672.652 (2)178
O1W—H1WB···N9ii0.821.802.626 (2)176

Symmetry codes: (i) x, y−1, z; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2339).

References

  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.
  • Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun.2, 31–34.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem.20, 3712–3715.
  • Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.
  • Zhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun.16, 1495–1496.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography