PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1949.
Published online 2009 July 22. doi:  10.1107/S1600536809027950
PMCID: PMC2977325

(E)-2-[(5-Bromo-2-hydroxy­benzyl­idene)amino]benzonitrile

Abstract

In the mol­ecule of the title compound, C14H9BrN2O, the dihedral angle between the aromatic rings is 1.09 (4)°. Intra­molecular O—H(...)N hydrogen bonding results in the formation of a planar (r.m.s. deviation = 0.0140 Å) six-membered ring. In the crystal structure, inter­molecular C—H(...)N inter­actions link the mol­ecules into chains.

Related literature

For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008 [triangle]); May et al. (2004 [triangle]); Weber et al. (2007 [triangle]). For a related structure, see: Elmalı et al. (1999 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1949-scheme1.jpg

Experimental

Crystal data

  • C14H9BrN2O
  • M r = 301.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1949-efi1.jpg
  • a = 25.609 (8) Å
  • b = 3.9299 (12) Å
  • c = 12.368 (4) Å
  • V = 1244.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.29 mm−1
  • T = 294 K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.518, T max = 0.518
  • 9720 measured reflections
  • 2771 independent reflections
  • 1737 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.090
  • S = 1.01
  • 2771 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1271 Friedel pairs
  • Flack parameter: 0.039 (14)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027950/hk2739sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027950/hk2739Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the corresponding values in a similar compound (Elmalı et al., 1999). Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of A/B = 1.09 (4)°. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of planar six-membered ring C (O1/N1/C1/C2/C7/H1A), it is oriented with respect to rings A and B at dihedral angles of A/C = 2.00 (4) and B/C = 1.42 (4) °. So, rings A, B and C are almost coplanar.

In the crystal structure, intermolecular C-H···N interactions link the molecules into chains (Fig. 2), , in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of hte title compound, 2-aminobenzonitrile (0.472 g, 4 mmol) and 5-bromo-2-hydroxybenzaldehyde (0.8 g, 4 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 5 h, and then cooled to room temperature. The solution was filtered and after two weeks yellow crystals suitable for X-ray analysis were obtained.

Refinement

H atoms were positioned geometrically with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9BrN2OF(000) = 600
Mr = 301.14Dx = 1.607 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1688 reflections
a = 25.609 (8) Åθ = 3.1–27.7°
b = 3.9299 (12) ŵ = 3.29 mm1
c = 12.368 (4) ÅT = 294 K
V = 1244.7 (7) Å3Prism, yellow
Z = 40.2 × 0.2 × 0.2 mm

Data collection

Bruker SMART CCD area-detector diffractometer2771 independent reflections
Radiation source: fine-focus sealed tube1737 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.6°, θmin = 1.6°
[var phi] and ω scansh = −33→33
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −5→5
Tmin = 0.518, Tmax = 0.518l = −16→14
9720 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090w = 1/[σ2(Fo2) + (0.0283P)2 + 0.0106P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2771 reflectionsΔρmax = 0.23 e Å3
163 parametersΔρmin = −0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1271 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.039 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.014802 (15)0.46800 (11)0.49637 (9)0.0816 (2)
O10.15855 (14)−0.0121 (8)0.1439 (2)0.0767 (9)
H1A0.18920.01840.16050.115*
N10.23690 (11)0.1858 (9)0.2691 (3)0.0471 (7)
N20.28448 (17)−0.1697 (11)0.0417 (3)0.0800 (12)
C10.14763 (14)0.2551 (10)0.3176 (3)0.0481 (9)
C20.12781 (19)0.1038 (11)0.2221 (4)0.0567 (12)
C30.0737 (2)0.0789 (11)0.2121 (4)0.0723 (13)
H3A0.0598−0.01220.14900.087*
C40.04062 (17)0.1828 (11)0.2912 (4)0.0679 (12)
H4A0.00470.15820.28250.081*
C50.06036 (14)0.3244 (10)0.3842 (4)0.0576 (10)
C60.11302 (15)0.3625 (11)0.3970 (3)0.0543 (10)
H6A0.12590.46190.45980.065*
C70.20246 (14)0.2971 (10)0.3346 (3)0.0488 (9)
H7A0.21350.41100.39640.059*
C80.29066 (13)0.2276 (9)0.2900 (3)0.0458 (9)
C90.32433 (17)0.1123 (10)0.2105 (3)0.0523 (10)
C100.37810 (18)0.1385 (12)0.2213 (4)0.0622 (12)
H10A0.40010.06230.16660.075*
C110.39839 (16)0.2791 (13)0.3143 (4)0.0735 (13)
H11A0.43440.29740.32270.088*
C120.36610 (17)0.3907 (12)0.3933 (4)0.0661 (12)
H12A0.38020.48640.45560.079*
C130.31227 (16)0.3646 (12)0.3830 (4)0.0613 (11)
H13A0.29070.43920.43860.074*
C140.30179 (18)−0.0458 (12)0.1155 (4)0.0598 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0607 (2)0.0846 (3)0.0995 (4)0.0101 (2)0.0174 (3)0.0112 (4)
O10.086 (2)0.096 (3)0.0480 (19)−0.0127 (17)−0.0052 (17)−0.0184 (16)
N10.0530 (19)0.054 (2)0.0344 (18)−0.0040 (14)0.0005 (15)−0.0044 (16)
N20.106 (3)0.081 (3)0.054 (3)0.002 (2)0.007 (2)−0.024 (2)
C10.055 (2)0.044 (2)0.045 (2)−0.0054 (19)−0.005 (2)0.0047 (19)
C20.073 (3)0.050 (3)0.047 (3)−0.009 (2)−0.004 (3)−0.005 (2)
C30.075 (3)0.076 (3)0.067 (3)−0.015 (3)−0.024 (3)0.004 (3)
C40.052 (2)0.060 (3)0.091 (4)−0.010 (2)−0.015 (3)0.009 (3)
C50.049 (2)0.048 (2)0.076 (3)0.0014 (18)−0.001 (2)0.016 (2)
C60.056 (2)0.056 (3)0.052 (3)−0.0010 (19)−0.003 (2)−0.006 (2)
C70.059 (2)0.049 (2)0.038 (2)−0.0061 (18)−0.006 (2)−0.002 (2)
C80.057 (2)0.042 (2)0.038 (2)−0.0070 (17)0.000 (2)0.0003 (19)
C90.066 (3)0.046 (2)0.045 (3)0.0001 (19)0.005 (2)0.004 (2)
C100.062 (3)0.061 (3)0.064 (3)0.000 (2)0.012 (3)−0.003 (3)
C110.054 (2)0.077 (3)0.089 (4)−0.003 (2)0.010 (3)0.000 (3)
C120.065 (3)0.069 (3)0.064 (3)−0.009 (2)−0.018 (2)−0.008 (2)
C130.057 (2)0.076 (3)0.051 (3)−0.006 (2)0.001 (2)−0.009 (2)
C140.076 (3)0.059 (3)0.045 (3)0.005 (2)0.014 (2)−0.007 (2)

Geometric parameters (Å, °)

Br1—C51.898 (4)C7—C11.429 (5)
O1—C21.328 (6)C7—H7A0.9300
O1—H1A0.8200C8—C91.385 (5)
N1—C71.275 (4)C8—C131.384 (5)
N1—C81.411 (4)C9—C101.387 (6)
C2—C11.416 (6)C10—C111.377 (6)
C3—C21.393 (7)C10—H10A0.9300
C3—C41.358 (7)C11—H11A0.9300
C3—H3A0.9300C12—C111.354 (6)
C4—H4A0.9300C12—H12A0.9300
C5—C41.374 (6)C13—C121.388 (6)
C6—C11.388 (5)C13—H13A0.9300
C6—C51.366 (5)C14—N21.125 (5)
C6—H6A0.9300C14—C91.449 (7)
C2—O1—H1A109.5N1—C7—H7A118.5
C7—N1—C8121.2 (3)C1—C7—H7A118.5
C2—C1—C7121.6 (4)C9—C8—N1116.0 (3)
C6—C1—C2119.2 (4)C9—C8—C13117.9 (3)
C6—C1—C7119.2 (4)C13—C8—N1126.0 (3)
O1—C2—C1122.6 (4)C8—C9—C10121.7 (4)
O1—C2—C3120.0 (4)C8—C9—C14118.0 (4)
C3—C2—C1117.4 (4)C10—C9—C14120.4 (4)
C2—C3—H3A118.8C9—C10—H10A120.5
C4—C3—C2122.4 (5)C11—C10—C9119.0 (4)
C4—C3—H3A118.8C11—C10—H10A120.5
C3—C4—C5119.7 (4)C10—C11—H11A119.9
C3—C4—H4A120.2C12—C11—C10120.2 (4)
C5—C4—H4A120.2C12—C11—H11A119.9
C4—C5—Br1120.4 (3)C11—C12—C13121.0 (4)
C6—C5—Br1119.3 (3)C11—C12—H12A119.5
C6—C5—C4120.3 (4)C13—C12—H12A119.5
C1—C6—H6A119.5C8—C13—C12120.2 (4)
C5—C6—C1121.0 (4)C8—C13—H13A119.9
C5—C6—H6A119.5C12—C13—H13A119.9
N1—C7—C1123.1 (3)N2—C14—C9179.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.932.651 (4)146
C7—H7A···N2i0.932.443.326 (4)160

Symmetry codes: (i) −x+1/2, y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2739).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Elmalı, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct.484, 229–234.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography