PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1950.
Published online 2009 July 22. doi:  10.1107/S1600536809027809
PMCID: PMC2977304

Ethyl 5-cyano-4-[2-(2,4-dichloro­phen­oxy)acetamido]-1-phenyl-1H-pyrrole-3-carboxyl­ate

Abstract

In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichloro­phenyl group form a dihedral angle of 8.14 (13)°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14)°. The C=O bond length is 1.213 (3) Å, indicating that the mol­ecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The mol­ecule is stabilized by an intra­molecular N—H(...)O hydrogen-bonding inter­action. In the crystal, the stacked mol­ecules exhibit inter­molecular C—H(...)O and C—H(...)N hydrogen-bonding inter­actions.

Related literature

For the preparation and biological activity of acid amides, see: Xue et al. (2007 [triangle]); Li et al. (1995 [triangle]). For related structures, see: He et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1950-scheme1.jpg

Experimental

Crystal data

  • C22H17Cl2N3O4
  • M r = 458.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1950-efi1.jpg
  • a = 32.8846 (18) Å
  • b = 7.6224 (4) Å
  • c = 17.2834 (9) Å
  • γ = 89.773 (1)°
  • V = 4332.2 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 298 K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.968, T max = 0.968
  • 16521 measured reflections
  • 4279 independent reflections
  • 3034 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.154
  • S = 0.99
  • 4279 reflections
  • 285 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027809/at2840sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027809/at2840Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D20092406) and the Science Research Project of Yunyang Medical College (No. 2007QDJ14).

supplementary crystallographic information

Comment

The chemical and pharmacological properties of acid amides have been investigated extensively, owing to their potentially beneficial chemical and biological activties (Xue et al., 2007 and Li et al., 1995). As part of our studies on the synthesis and characterization of related compounds (He et al., 2007a,b), we report here the synthesis and crystal structure of ethyl 4-(2-(2,4-dichlorophenoxy)acetamido)-5-cyano-1-phenyl-1H-pyrrole- 3-carboxylate, (I).

Within the molecule of (I), the bond lengths and angles present no unusual features. The pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13)°, the C17—C22 phenyl ring is twisted with respect to pyrrole ring, with a dihedral angle of 60.77 (14)°. The C=O bond length is 1.213 (3) Å, indicating that the molecule is in the keto form (Fig. 1), associated with –CONH– moiety, and the amide group adopts the usual trans conformation. The crystal structure is stabilized by intramolecular N—H···O hydrogen bonds interactions. In additional, the stacked molecules exhibit intermolecular C—H···O and C—H···N hydrogen bonds interactions (Fig 2. Table 1).

Experimental

To a solution of the ethyl 4-amino-5-cyano-1-phenyl-1H-pyrrole-3-carboxylate (3 mmol) in dry dichloromethane (15 ml) was added 2-(2,4-dichlorophenoxy)acetyl chloride at 273–278 K. After stirring the reaction mixture for 4 h from 273–278 K to room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 45%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:3 v/v) at room temperature.

Refinement

The carbon-bound hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3. The H atom of the NH group was found from a difference Fourier map and refined with a fixed Uiso of 0.05.

Figures

Fig. 1.
A view of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are drawn as a dashed line.
Fig. 2.
Part of the crystal structure of (I), showing hydrogen bonds stacking interactions.

Crystal data

C22H17Cl2N3O4F(000) = 1888
Mr = 458.29Dx = 1.401 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4400 reflections
a = 32.8846 (18) Åθ = 2.5–26.3°
b = 7.6224 (4) ŵ = 0.33 mm1
c = 17.2834 (9) ÅT = 298 K
β = 90°Block, yellow
V = 4332.2 (4) Å30.10 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART 4K CCD area-detector diffractometer4279 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
graphiteRint = 0.081
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −40→39
Tmin = 0.968, Tmax = 0.968k = −9→9
16521 measured reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
4279 reflectionsΔρmax = 0.32 e Å3
285 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.06329 (6)0.1879 (3)0.05715 (13)0.0426 (6)
C21.09068 (7)0.1312 (3)0.11185 (14)0.0466 (6)
H21.08130.08010.15730.056*
C31.13204 (7)0.1495 (3)0.09995 (14)0.0472 (6)
H31.15050.11070.13690.057*
C41.14550 (7)0.2257 (3)0.03284 (15)0.0463 (6)
C51.11863 (7)0.2840 (3)−0.02255 (14)0.0470 (6)
H51.12820.3351−0.06790.056*
C61.07783 (7)0.2659 (3)−0.01021 (14)0.0469 (6)
C71.00695 (6)0.1112 (4)0.13490 (13)0.0558 (7)
H7A1.01840.17920.17700.067*
H7B1.0147−0.01030.14200.067*
C80.96114 (7)0.1270 (4)0.13558 (14)0.0511 (7)
C90.90125 (6)0.1809 (3)0.05703 (13)0.0368 (5)
C100.88509 (6)0.2629 (3)−0.00962 (13)0.0399 (6)
C110.84392 (7)0.2760 (3)0.00079 (14)0.0440 (6)
H110.82590.3266−0.03400.053*
C120.86902 (6)0.1425 (3)0.10524 (12)0.0387 (5)
C130.86531 (6)0.0454 (3)0.17456 (14)0.0446 (6)
C140.90849 (7)0.3115 (3)−0.07786 (13)0.0431 (6)
C150.90645 (8)0.4263 (4)−0.20453 (14)0.0589 (7)
H15A0.91890.3226−0.22670.071*
H15B0.92770.5115−0.19430.071*
C160.87619 (9)0.5007 (4)−0.25914 (15)0.0693 (8)
H16A0.85680.4119−0.27290.104*
H16B0.88980.5412−0.30480.104*
H16C0.86240.5970−0.23500.104*
C170.79429 (7)0.2161 (4)0.10469 (13)0.0448 (6)
C180.77391 (8)0.0684 (4)0.12715 (16)0.0647 (8)
H180.7852−0.04190.11930.078*
C190.73596 (8)0.0858 (5)0.16203 (18)0.0770 (10)
H190.7217−0.01330.17750.092*
C200.71982 (8)0.2485 (5)0.17348 (18)0.0729 (10)
H200.69450.25960.19680.088*
C210.74032 (9)0.3942 (5)0.15128 (18)0.0774 (10)
H210.72910.50450.15960.093*
C220.77795 (8)0.3792 (4)0.11624 (16)0.0650 (8)
H220.79200.47890.10070.078*
Cl11.197500 (19)0.25261 (10)0.01853 (5)0.0708 (3)
Cl21.04355 (2)0.33930 (11)−0.07912 (4)0.0718 (3)
N10.94269 (5)0.1515 (3)0.06772 (11)0.0413 (5)
H10.9550 (7)0.163 (3)0.0265 (14)0.050*
N20.83373 (5)0.2042 (3)0.06907 (11)0.0428 (5)
N30.85896 (7)−0.0374 (3)0.22814 (13)0.0672 (7)
O11.02216 (4)0.1736 (3)0.06353 (9)0.0548 (5)
O20.94335 (5)0.1152 (3)0.19676 (10)0.0876 (8)
O30.94465 (5)0.2865 (3)−0.08352 (10)0.0602 (5)
O40.88571 (5)0.3817 (2)−0.13360 (9)0.0512 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0333 (11)0.0469 (14)0.0477 (14)−0.0048 (11)0.0088 (9)−0.0098 (11)
C20.0392 (12)0.0525 (16)0.0481 (14)0.0005 (11)0.0085 (10)−0.0034 (11)
C30.0365 (12)0.0482 (15)0.0568 (15)−0.0009 (11)0.0050 (10)−0.0051 (12)
C40.0351 (12)0.0420 (15)0.0619 (17)−0.0056 (10)0.0123 (11)−0.0102 (12)
C50.0456 (14)0.0446 (15)0.0509 (15)−0.0098 (12)0.0122 (11)−0.0045 (12)
C60.0453 (13)0.0466 (15)0.0488 (15)−0.0050 (11)0.0058 (11)−0.0047 (11)
C70.0332 (12)0.088 (2)0.0467 (15)−0.0018 (13)0.0080 (10)0.0048 (14)
C80.0367 (12)0.0704 (19)0.0462 (15)−0.0007 (12)0.0077 (10)0.0003 (13)
C90.0346 (11)0.0349 (12)0.0408 (13)0.0005 (9)0.0069 (9)−0.0042 (10)
C100.0379 (12)0.0401 (14)0.0417 (13)−0.0004 (10)0.0061 (9)−0.0062 (10)
C110.0402 (12)0.0495 (15)0.0422 (14)0.0065 (11)0.0030 (10)0.0003 (11)
C120.0335 (11)0.0396 (14)0.0429 (13)0.0006 (10)0.0037 (9)−0.0053 (10)
C130.0387 (12)0.0448 (15)0.0503 (15)−0.0017 (11)0.0095 (10)−0.0015 (12)
C140.0451 (13)0.0406 (14)0.0438 (14)−0.0024 (11)0.0071 (10)−0.0033 (11)
C150.0665 (16)0.0642 (19)0.0462 (15)−0.0044 (14)0.0142 (12)0.0064 (13)
C160.095 (2)0.0593 (19)0.0532 (17)0.0005 (16)0.0097 (15)0.0086 (14)
C170.0321 (11)0.0607 (17)0.0417 (14)0.0026 (11)0.0075 (9)−0.0056 (12)
C180.0486 (15)0.062 (2)0.083 (2)−0.0056 (14)0.0190 (13)−0.0104 (16)
C190.0512 (16)0.090 (3)0.089 (2)−0.0172 (17)0.0248 (15)−0.0068 (19)
C200.0404 (15)0.113 (3)0.065 (2)0.0102 (17)0.0119 (13)−0.0050 (18)
C210.0597 (18)0.076 (2)0.097 (2)0.0263 (17)0.0216 (16)0.0000 (19)
C220.0525 (15)0.062 (2)0.081 (2)0.0180 (14)0.0167 (14)0.0102 (15)
Cl10.0377 (4)0.0833 (7)0.0914 (6)−0.0088 (3)0.0170 (3)0.0030 (4)
Cl20.0563 (4)0.0931 (7)0.0661 (5)−0.0070 (4)−0.0030 (3)0.0237 (4)
N10.0296 (9)0.0548 (13)0.0395 (11)0.0012 (9)0.0095 (8)−0.0021 (9)
N20.0327 (10)0.0500 (12)0.0457 (12)0.0018 (9)0.0088 (8)−0.0022 (9)
N30.0656 (14)0.0708 (17)0.0651 (15)−0.0111 (13)0.0067 (11)0.0144 (14)
O10.0330 (8)0.0832 (14)0.0482 (10)−0.0031 (8)0.0087 (7)0.0094 (9)
O20.0396 (10)0.177 (3)0.0465 (11)0.0017 (12)0.0101 (8)0.0107 (13)
O30.0381 (9)0.0839 (15)0.0584 (12)0.0009 (9)0.0113 (8)0.0078 (10)
O40.0494 (9)0.0605 (12)0.0436 (9)0.0053 (8)0.0091 (7)0.0083 (8)

Geometric parameters (Å, °)

C1—O11.363 (2)C12—N21.401 (3)
C1—C21.377 (3)C12—C131.415 (3)
C1—C61.393 (3)C13—N31.141 (3)
C2—C31.384 (3)C14—O31.210 (3)
C2—H20.9300C14—O41.334 (3)
C3—C41.372 (3)C15—O41.445 (3)
C3—H30.9300C15—C161.486 (4)
C4—C51.378 (4)C15—H15A0.9700
C4—Cl11.742 (2)C15—H15B0.9700
C5—C61.367 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—Cl21.734 (3)C16—H16C0.9600
C7—O11.415 (2)C17—C181.368 (4)
C7—C81.513 (3)C17—C221.370 (3)
C7—H7A0.9700C17—N21.440 (3)
C7—H7B0.9700C18—C191.394 (3)
C8—O21.213 (3)C18—H180.9300
C8—N11.335 (3)C19—C201.365 (4)
C9—C121.381 (3)C19—H190.9300
C9—N11.395 (3)C20—C211.356 (4)
C9—C101.416 (3)C20—H200.9300
C10—C111.371 (3)C21—C221.384 (3)
C10—C141.458 (3)C21—H210.9300
C11—N21.345 (3)C22—H220.9300
C11—H110.9300N1—H10.82 (2)
O1—C1—C2124.7 (2)O3—C14—C10123.1 (2)
O1—C1—C6116.3 (2)O4—C14—C10112.99 (19)
C2—C1—C6119.0 (2)O4—C15—C16108.3 (2)
C1—C2—C3120.7 (2)O4—C15—H15A110.0
C1—C2—H2119.7C16—C15—H15A110.0
C3—C2—H2119.7O4—C15—H15B110.0
C4—C3—C2119.1 (2)C16—C15—H15B110.0
C4—C3—H3120.5H15A—C15—H15B108.4
C2—C3—H3120.5C15—C16—H16A109.5
C3—C4—C5121.2 (2)C15—C16—H16B109.5
C3—C4—Cl1119.2 (2)H16A—C16—H16B109.5
C5—C4—Cl1119.60 (19)C15—C16—H16C109.5
C6—C5—C4119.3 (2)H16A—C16—H16C109.5
C6—C5—H5120.3H16B—C16—H16C109.5
C4—C5—H5120.3C18—C17—C22120.9 (2)
C5—C6—C1120.7 (2)C18—C17—N2120.8 (2)
C5—C6—Cl2119.96 (19)C22—C17—N2118.3 (2)
C1—C6—Cl2119.30 (18)C17—C18—C19118.9 (3)
O1—C7—C8109.44 (19)C17—C18—H18120.5
O1—C7—H7A109.8C19—C18—H18120.5
C8—C7—H7A109.8C20—C19—C18119.9 (3)
O1—C7—H7B109.8C20—C19—H19120.0
C8—C7—H7B109.8C18—C19—H19120.0
H7A—C7—H7B108.2C21—C20—C19120.7 (3)
O2—C8—N1123.9 (2)C21—C20—H20119.6
O2—C8—C7118.8 (2)C19—C20—H20119.6
N1—C8—C7117.25 (19)C20—C21—C22120.1 (3)
C12—C9—N1129.6 (2)C20—C21—H21119.9
C12—C9—C10107.26 (19)C22—C21—H21119.9
N1—C9—C10123.14 (18)C17—C22—C21119.4 (3)
C11—C10—C9107.27 (19)C17—C22—H22120.3
C11—C10—C14127.6 (2)C21—C22—H22120.3
C9—C10—C14124.99 (19)C8—N1—C9125.75 (19)
N2—C11—C10109.4 (2)C8—N1—H1123.4 (17)
N2—C11—H11125.3C9—N1—H1110.5 (18)
C10—C11—H11125.3C11—N2—C12108.81 (17)
C9—C12—N2107.22 (19)C11—N2—C17125.1 (2)
C9—C12—C13133.6 (2)C12—N2—C17125.30 (19)
N2—C12—C13118.87 (18)C1—O1—C7116.70 (18)
N3—C13—C12173.9 (2)C14—O4—C15116.29 (18)
O3—C14—O4123.9 (2)
O1—C1—C2—C3179.2 (2)C22—C17—C18—C190.2 (4)
C6—C1—C2—C3−0.7 (4)N2—C17—C18—C19179.4 (2)
C1—C2—C3—C40.2 (4)C17—C18—C19—C20−0.2 (5)
C2—C3—C4—C50.1 (4)C18—C19—C20—C210.0 (5)
C2—C3—C4—Cl1178.79 (19)C19—C20—C21—C220.3 (5)
C3—C4—C5—C60.2 (4)C18—C17—C22—C210.1 (4)
Cl1—C4—C5—C6−178.57 (18)N2—C17—C22—C21−179.2 (3)
C4—C5—C6—C1−0.6 (4)C20—C21—C22—C17−0.4 (5)
C4—C5—C6—Cl2179.78 (19)O2—C8—N1—C95.3 (4)
O1—C1—C6—C5−179.0 (2)C7—C8—N1—C9−175.4 (2)
C2—C1—C6—C50.9 (4)C12—C9—N1—C8−21.0 (4)
O1—C1—C6—Cl20.6 (3)C10—C9—N1—C8158.0 (2)
C2—C1—C6—Cl2−179.51 (19)C10—C11—N2—C120.3 (3)
O1—C7—C8—O2−164.7 (3)C10—C11—N2—C17170.5 (2)
O1—C7—C8—N115.9 (3)C9—C12—N2—C110.7 (3)
C12—C9—C10—C111.5 (3)C13—C12—N2—C11−173.6 (2)
N1—C9—C10—C11−177.7 (2)C9—C12—N2—C17−169.5 (2)
C12—C9—C10—C14−174.7 (2)C13—C12—N2—C1716.2 (3)
N1—C9—C10—C146.1 (4)C18—C17—N2—C11126.0 (3)
C9—C10—C11—N2−1.1 (3)C22—C17—N2—C11−54.7 (3)
C14—C10—C11—N2174.9 (2)C18—C17—N2—C12−65.4 (3)
N1—C9—C12—N2177.8 (2)C22—C17—N2—C12113.9 (3)
C10—C9—C12—N2−1.3 (2)C2—C1—O1—C76.4 (3)
N1—C9—C12—C13−9.1 (4)C6—C1—O1—C7−173.7 (2)
C10—C9—C12—C13171.7 (3)C8—C7—O1—C1172.4 (2)
C11—C10—C14—O3−175.9 (2)O3—C14—O4—C150.9 (4)
C9—C10—C14—O3−0.5 (4)C10—C14—O4—C15−177.4 (2)
C11—C10—C14—O42.5 (4)C16—C15—O4—C14179.6 (2)
C9—C10—C14—O4177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O30.82 (2)2.15 (3)2.813 (3)137 (2)
C7—H7A···O2i0.972.573.341 (3)137
C3—H3···N3i0.932.613.312 (3)133

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2840).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, P., Peng, X.-M. & Li, G.-H. (2007a). Acta Cryst. E63, o4884.
  • He, P., Zheng, A., Cai, C.-Q. & Fang, C.-L. (2007b). Acta Cryst. E63, o3185.
  • Li, L. & Xu, S. (1995). Acta Pharm. Sin.30, 556–560.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xue, S., Yan, L. & Fang, H. (2007). J. Shanghai Normal Univ.36, 79–82.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography