PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1958.
Published online 2009 July 22. doi:  10.1107/S1600536809028153
PMCID: PMC2977298

5-Chloro-2-phenyl-3-phenyl­sulfinyl-1-benzofuran

Abstract

In the title compound, C20H13ClO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the S-bound phenyl ring is nearly perpendicular to this plane [80.87 (5)°]. The phenyl ring in the 2-position is rotated out of the benzofuran plane, making a dihedral angle of 17.43 (7)°. The crystal structure features π–π inter­actions between the phenyl ring and the furyl ring of a neighbouring benzofuran system [centroid–centroid distance = 3.886 (2) Å].

Related literature

For the crystal structures of similar 2-phenyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a [triangle],b [triangle]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999 [triangle]); Twyman & Allsop (1999 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); von Reuss & König (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1958-scheme1.jpg

Experimental

Crystal data

  • C20H13ClO2S
  • M r = 352.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1958-efi1.jpg
  • a = 8.2726 (5) Å
  • b = 9.4111 (5) Å
  • c = 11.3811 (6) Å
  • α = 73.360 (1)°
  • β = 81.630 (1)°
  • γ = 70.757 (1)°
  • V = 800.25 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 273 K
  • 0.24 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.915, T max = 0.963
  • 6930 measured reflections
  • 3428 independent reflections
  • 2843 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.06
  • 3428 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028153/ng2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028153/ng2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules containing the benzofuran skeleton have attracted considerable interest in view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999) and are well known as natural products (Akgul & Anil, 2003; von Reuss & König, 2004). This work is related to our communications on the synthesis and structures of 2-phenyl-3-phenylsulfiny-1-benzofuran analogues, viz. 5-chloro-7-methyl-2-phenyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2009a) and 5-iodo-2-phenyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2009b). Here we report the crystal structure of the title compound (I), 5-chloro-2-phenyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in (I) formed by the plane of the benzofuran ring and the plane of 2-phenyl ring is 17.43 (7)°, and the phenyl ring (C15-C20) with80.87 (5) ° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the benzene ring and the furan ring from the neighbouring bennzofuran systems. The Cg1···Cg2i distance is 3.886 (2) Å (Cg1 and Cg2 are the centroides of the C2-C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively).

Experimental

The 77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 5-chloro-2-phenyl-3-phenylsulfanyl-1-benzofuran (226 mg, 0.7 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 421-422 K; Rf = 0.55 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The π–π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) - x + 1, - y + 1, -z.]

Crystal data

C20H13ClO2SZ = 2
Mr = 352.81F(000) = 364
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2726 (5) ÅCell parameters from 4091 reflections
b = 9.4111 (5) Åθ = 2.4–27.4°
c = 11.3811 (6) ŵ = 0.38 mm1
α = 73.360 (1)°T = 273 K
β = 81.630 (1)°Block, colorless
γ = 70.757 (1)°0.24 × 0.15 × 0.10 mm
V = 800.25 (8) Å3

Data collection

Bruker SMART CCD diffractometer3428 independent reflections
Radiation source: fine-focus sealed tube2843 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −11→11
Tmin = 0.915, Tmax = 0.963l = −14→14
6930 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2959P] where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.60764 (5)0.10727 (5)0.36530 (4)0.03141 (12)
Cl1.01634 (7)0.23915 (6)−0.11687 (4)0.04741 (15)
O10.50587 (16)0.56115 (13)0.20476 (11)0.0353 (3)
O20.78018 (15)0.00894 (15)0.33104 (13)0.0442 (3)
C10.5863 (2)0.29999 (19)0.27413 (15)0.0299 (4)
C20.6787 (2)0.33818 (19)0.15726 (15)0.0308 (4)
C30.7989 (2)0.2542 (2)0.08331 (16)0.0336 (4)
H30.83570.14600.10470.040*
C40.8610 (2)0.3395 (2)−0.02336 (17)0.0368 (4)
C50.8064 (3)0.5023 (2)−0.05899 (17)0.0415 (4)
H50.85170.5545−0.13170.050*
C60.6860 (3)0.5857 (2)0.01297 (17)0.0401 (4)
H60.64760.6939−0.00940.048*
C70.6246 (2)0.5006 (2)0.12049 (16)0.0331 (4)
C80.4853 (2)0.4365 (2)0.29930 (15)0.0314 (4)
C90.3623 (2)0.4786 (2)0.39888 (16)0.0325 (4)
C100.3580 (3)0.3731 (2)0.51308 (17)0.0391 (4)
H100.43470.27300.52700.047*
C110.2402 (3)0.4167 (2)0.60561 (18)0.0435 (5)
H110.23820.34550.68140.052*
C120.1258 (3)0.5644 (3)0.58682 (19)0.0465 (5)
H120.04670.59270.64940.056*
C130.1293 (3)0.6706 (3)0.4743 (2)0.0515 (5)
H130.05270.77070.46120.062*
C140.2462 (2)0.6280 (2)0.38153 (19)0.0445 (5)
H140.24770.70010.30620.053*
C150.4533 (2)0.07047 (18)0.29161 (15)0.0286 (3)
C160.5052 (2)−0.0090 (2)0.20082 (17)0.0384 (4)
H160.6205−0.04220.17560.046*
C170.3826 (3)−0.0381 (2)0.14814 (19)0.0467 (5)
H170.4156−0.09060.08650.056*
C180.2127 (3)0.0101 (2)0.1865 (2)0.0482 (5)
H180.1313−0.00900.14980.058*
C190.1615 (2)0.0868 (2)0.2791 (2)0.0444 (5)
H190.04640.11770.30530.053*
C200.2819 (2)0.1173 (2)0.33250 (17)0.0352 (4)
H200.24880.16840.39500.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0263 (2)0.0282 (2)0.0325 (2)−0.00846 (16)−0.00388 (16)0.00459 (16)
Cl0.0486 (3)0.0557 (3)0.0388 (3)−0.0223 (2)0.0101 (2)−0.0119 (2)
O10.0398 (7)0.0282 (6)0.0336 (7)−0.0129 (5)−0.0012 (5)0.0010 (5)
O20.0248 (6)0.0357 (7)0.0569 (9)−0.0031 (5)−0.0028 (6)0.0047 (6)
C10.0275 (8)0.0290 (8)0.0309 (9)−0.0122 (7)−0.0048 (7)0.0017 (7)
C20.0285 (8)0.0323 (9)0.0303 (8)−0.0141 (7)−0.0056 (7)0.0017 (7)
C30.0313 (9)0.0341 (9)0.0338 (9)−0.0136 (7)−0.0027 (7)−0.0014 (7)
C40.0339 (9)0.0427 (10)0.0338 (9)−0.0160 (8)−0.0011 (7)−0.0051 (8)
C50.0477 (11)0.0449 (11)0.0312 (9)−0.0245 (9)0.0013 (8)0.0017 (8)
C60.0480 (11)0.0323 (9)0.0368 (10)−0.0185 (8)−0.0035 (8)0.0041 (8)
C70.0335 (9)0.0327 (9)0.0311 (9)−0.0136 (7)−0.0034 (7)−0.0001 (7)
C80.0316 (9)0.0312 (9)0.0303 (9)−0.0150 (7)−0.0063 (7)0.0026 (7)
C90.0312 (9)0.0331 (9)0.0339 (9)−0.0138 (7)−0.0043 (7)−0.0039 (7)
C100.0450 (10)0.0333 (9)0.0360 (10)−0.0122 (8)−0.0019 (8)−0.0039 (8)
C110.0494 (11)0.0456 (11)0.0334 (10)−0.0181 (9)0.0022 (8)−0.0047 (8)
C120.0405 (11)0.0521 (12)0.0458 (11)−0.0154 (9)0.0082 (9)−0.0147 (9)
C130.0420 (11)0.0415 (11)0.0579 (13)−0.0026 (9)0.0036 (10)−0.0075 (10)
C140.0393 (10)0.0386 (10)0.0432 (11)−0.0077 (8)0.0002 (8)0.0024 (8)
C150.0277 (8)0.0218 (8)0.0300 (8)−0.0077 (6)−0.0005 (6)0.0025 (6)
C160.0398 (10)0.0278 (9)0.0408 (10)−0.0072 (7)0.0059 (8)−0.0060 (7)
C170.0639 (14)0.0327 (10)0.0452 (11)−0.0148 (9)−0.0050 (10)−0.0115 (8)
C180.0533 (12)0.0337 (10)0.0619 (13)−0.0165 (9)−0.0204 (10)−0.0063 (9)
C190.0290 (9)0.0413 (11)0.0610 (13)−0.0122 (8)−0.0040 (9)−0.0075 (9)
C200.0297 (9)0.0335 (9)0.0398 (10)−0.0094 (7)0.0006 (7)−0.0069 (8)

Geometric parameters (Å, °)

S—O21.4898 (13)C10—C111.383 (3)
S—C11.7782 (16)C10—H100.9300
S—C151.7953 (17)C11—C121.376 (3)
Cl—C41.7471 (19)C11—H110.9300
O1—C71.371 (2)C12—C131.384 (3)
O1—C81.3850 (19)C12—H120.9300
C1—C81.365 (2)C13—C141.378 (3)
C1—C21.447 (2)C13—H130.9300
C2—C31.393 (2)C14—H140.9300
C2—C71.396 (2)C15—C161.383 (3)
C3—C41.384 (2)C15—C201.391 (2)
C3—H30.9300C16—C171.385 (3)
C4—C51.400 (3)C16—H160.9300
C5—C61.376 (3)C17—C181.374 (3)
C5—H50.9300C17—H170.9300
C6—C71.386 (2)C18—C191.384 (3)
C6—H60.9300C18—H180.9300
C8—C91.460 (2)C19—C201.382 (3)
C9—C141.395 (3)C19—H190.9300
C9—C101.395 (2)C20—H200.9300
O2—S—C1106.48 (8)C11—C10—H10119.8
O2—S—C15107.16 (8)C9—C10—H10119.8
C1—S—C1597.09 (7)C12—C11—C10120.71 (18)
C7—O1—C8106.97 (13)C12—C11—H11119.6
C8—C1—C2107.66 (14)C10—C11—H11119.6
C8—C1—S127.92 (13)C11—C12—C13119.62 (19)
C2—C1—S124.42 (13)C11—C12—H12120.2
C3—C2—C7119.65 (15)C13—C12—H12120.2
C3—C2—C1135.69 (16)C14—C13—C12120.05 (19)
C7—C2—C1104.66 (15)C14—C13—H13120.0
C4—C3—C2116.86 (16)C12—C13—H13120.0
C4—C3—H3121.6C13—C14—C9121.03 (18)
C2—C3—H3121.6C13—C14—H14119.5
C3—C4—C5122.95 (18)C9—C14—H14119.5
C3—C4—Cl118.45 (15)C16—C15—C20121.14 (17)
C5—C4—Cl118.60 (14)C16—C15—S120.62 (13)
C6—C5—C4120.37 (16)C20—C15—S118.17 (13)
C6—C5—H5119.8C15—C16—C17118.89 (18)
C4—C5—H5119.8C15—C16—H16120.6
C5—C6—C7116.83 (17)C17—C16—H16120.6
C5—C6—H6121.6C18—C17—C16120.34 (19)
C7—C6—H6121.6C18—C17—H17119.8
O1—C7—C6125.88 (16)C16—C17—H17119.8
O1—C7—C2110.78 (14)C17—C18—C19120.68 (19)
C6—C7—C2123.33 (17)C17—C18—H18119.7
C1—C8—O1109.91 (15)C19—C18—H18119.7
C1—C8—C9135.11 (15)C20—C19—C18119.80 (19)
O1—C8—C9114.96 (15)C20—C19—H19120.1
C14—C9—C10118.28 (17)C18—C19—H19120.1
C14—C9—C8119.98 (16)C19—C20—C15119.13 (18)
C10—C9—C8121.73 (16)C19—C20—H20120.4
C11—C10—C9120.32 (18)C15—C20—H20120.4
O2—S—C1—C8−154.75 (16)C7—O1—C8—C1−1.18 (18)
C15—S—C1—C894.95 (17)C7—O1—C8—C9180.00 (14)
O2—S—C1—C224.56 (16)C1—C8—C9—C14−162.7 (2)
C15—S—C1—C2−85.74 (15)O1—C8—C9—C1415.7 (2)
C8—C1—C2—C3179.49 (19)C1—C8—C9—C1018.0 (3)
S—C1—C2—C30.1 (3)O1—C8—C9—C10−163.57 (16)
C8—C1—C2—C70.36 (18)C14—C9—C10—C110.5 (3)
S—C1—C2—C7−179.07 (12)C8—C9—C10—C11179.81 (17)
C7—C2—C3—C41.3 (2)C9—C10—C11—C12−0.1 (3)
C1—C2—C3—C4−177.78 (18)C10—C11—C12—C13−0.3 (3)
C2—C3—C4—C5−1.0 (3)C11—C12—C13—C140.3 (3)
C2—C3—C4—Cl178.31 (13)C12—C13—C14—C90.0 (3)
C3—C4—C5—C60.2 (3)C10—C9—C14—C13−0.5 (3)
Cl—C4—C5—C6−179.13 (15)C8—C9—C14—C13−179.77 (19)
C4—C5—C6—C70.4 (3)O2—S—C15—C16−12.69 (15)
C8—O1—C7—C6−178.23 (17)C1—S—C15—C1697.05 (14)
C8—O1—C7—C21.43 (18)O2—S—C15—C20164.24 (13)
C5—C6—C7—O1179.52 (17)C1—S—C15—C20−86.02 (14)
C5—C6—C7—C2−0.1 (3)C20—C15—C16—C171.7 (3)
C3—C2—C7—O1179.59 (14)S—C15—C16—C17178.56 (13)
C1—C2—C7—O1−1.11 (19)C15—C16—C17—C18−0.6 (3)
C3—C2—C7—C6−0.7 (3)C16—C17—C18—C19−0.7 (3)
C1—C2—C7—C6178.56 (17)C17—C18—C19—C200.9 (3)
C2—C1—C8—O10.50 (19)C18—C19—C20—C150.2 (3)
S—C1—C8—O1179.91 (12)C16—C15—C20—C19−1.6 (2)
C2—C1—C8—C9178.98 (18)S—C15—C20—C19−178.46 (13)
S—C1—C8—C9−1.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2614).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1767. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1809. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PubMed]
  • Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118. [PubMed]
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett 40, 9383–9384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography