PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m987–m988.
Published online 2009 July 25. doi:  10.1107/S1600536809028694
PMCID: PMC2977295

Bis(1H-imidazole-κN 3)bis­(2-oxidopyridinium-3-carboxyl­ato-κ2 O 2,O 3)cobalt(II)

Abstract

In the mol­ecule of the title CoII complex, [Co(C6H4NO3)2(C3H4N2)2], the CoII atom is located on a twofold rotation axis and chelated by two oxidopyridiniumcarboxyl­ate anions and further cis-coordinated by two imidazole ligands in a distorted octa­hedral geometry. The shorter C—O bond distance of 1.260 (2) Å suggests electron delocalization between the oxido group and the pyridinium ring. The uncoordinated carboxyl­ate O atom links with the imidazole and pyridinium rings of adjacent mol­ecules via N—H(...)O hydrogen bonding. Weak C—H(...)O hydrogen bonding is also present in the crystal structure.

Related literature

For the isostructural NiII complex, see: Zhang et al. (2009 [triangle]). For the shorter C—O bond distance between the pyridine ring and the hydr­oxy-O atom in 2-oxidopyridinium-3-carboxyl­ate complexes and in 2-hydroxy­pyridine­carboxyl­ate complexes, see: Yao et al. (2004 [triangle]); Yan & Hu (2007a [triangle],b [triangle]); Wen & Liu (2007 [triangle]); Quintal et al. (2002 [triangle]). For the corresponding C—O bond distances in 2-hydroxy­benzencarboxylic acid and in metal complexes of 2-hydroxy­benzencarboxyl­ate, see: Munshi & Guru Row (2006 [triangle]); Su & Xu (2005 [triangle]); Li et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m987-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H4NO3)2(C3H4N2)2]
  • M r = 471.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m987-efi2.jpg
  • a = 16.594 (2) Å
  • b = 10.0524 (12) Å
  • c = 12.8271 (15) Å
  • β = 111.407 (4)°
  • V = 1992.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 294 K
  • 0.40 × 0.30 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.665, T max = 0.790
  • 10627 measured reflections
  • 1824 independent reflections
  • 1527 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.065
  • S = 1.07
  • 1824 reflections
  • 141 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028694/hk2743sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028694/hk2743Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

The title CoII complex is isostructural with the NiII complex (Zhang et al. 2009).

In the title molecule, the Co atom is located on a twofold axis and is coordinated by two imidazole molecules in cis-configuration, two oxidopyridinium-carboxylate anions further chelate to the Co atom with carboxyl-O and deprotonated hydroxy-O atoms to complete the distorted octahedral coordination geometry (Fig. 1 and Table 1). The benzene ring is twisted with respect to the carboxyl group and O1/O3/Co coordination plane with dihedral angles of 21.52 (13)° and 41.05 (7)°, respectively. The shorter C1—O3 [1.260 (2) Å] bond agrees with those found in the isostructural Ni complex (Zhang et al. 2009) and in the other transition metal complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a, b; Wen & Liu, 2007), it is also consistent with that found in hydroxy-pyridinecarboxylate complexes (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter C1—O3 bond is much different from the C—O bond distance of ca 1.35 Å between benzene ring and hydroxy-O atom found in hydroxybenzencarboxylic acid (Munshi & Row, 2006) and metal complexes of hydroxybenzenecarboxylate (Su & Xu, 2005; Li et al., 2005).

The uncoordinated carboxyl O atom simultaneously links with the imidazole and pyridinium rings via N—H···O hydrogen bonding of adjacent molecules (Table 2). Weak C—H···O hydrogen bonding is also present in the crystal structure.

Experimental

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and CoCl2.6H2O (0.24 g, 1 mmol) were dissolved in water (15 ml). The solution was refluxed for 4.5 h, after cooling to room temperature the solution was filtered. The single crystals of the title complex were obtained from the filtrate after one week.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title complex with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, 1/2 - z].

Crystal data

[Co(C6H4NO3)2(C3H4N2)2]F(000) = 964
Mr = 471.30Dx = 1.571 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4226 reflections
a = 16.594 (2) Åθ = 2.5–25.2°
b = 10.0524 (12) ŵ = 0.91 mm1
c = 12.8271 (15) ÅT = 294 K
β = 111.407 (4)°Block, pink
V = 1992.1 (4) Å30.40 × 0.30 × 0.26 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer1824 independent reflections
Radiation source: fine-focus sealed tube1527 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 25.4°, θmin = 2.4°
ω scansh = −20→20
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −12→12
Tmin = 0.665, Tmax = 0.790l = −14→15
10627 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0231P)2 + 1.9358P] where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.50000.24771 (3)0.25000.02958 (13)
N10.61270 (11)−0.12644 (16)0.30331 (13)0.0369 (4)
H10.6138−0.13910.23760.044*
N20.58362 (11)0.39282 (16)0.22623 (13)0.0348 (4)
N30.62322 (13)0.56271 (17)0.14899 (16)0.0468 (5)
H30.61980.63080.10700.056*
O10.56130 (10)0.24739 (13)0.42230 (11)0.0392 (4)
O20.62213 (10)0.16732 (14)0.59300 (10)0.0410 (4)
O30.58952 (9)0.09062 (13)0.25972 (10)0.0352 (3)
C10.59989 (12)0.00073 (18)0.33196 (15)0.0293 (4)
C20.60117 (12)0.01700 (18)0.44393 (15)0.0288 (4)
C30.61152 (14)−0.0923 (2)0.51100 (17)0.0375 (5)
H3A0.6115−0.08140.58300.045*
C40.62211 (16)−0.2203 (2)0.47472 (18)0.0454 (6)
H40.6278−0.29380.52090.055*
C50.62375 (16)−0.2340 (2)0.37099 (19)0.0449 (6)
H50.6325−0.31750.34570.054*
C60.59387 (12)0.15307 (19)0.48875 (15)0.0299 (4)
C70.55679 (15)0.4904 (2)0.15344 (18)0.0396 (5)
H70.49900.50710.11050.048*
C80.67219 (15)0.4046 (2)0.27010 (19)0.0458 (6)
H80.70940.34880.32420.055*
C90.69703 (16)0.5089 (2)0.2231 (2)0.0510 (6)
H90.75330.53810.23830.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.0402 (2)0.02722 (19)0.0222 (2)0.0000.01241 (16)0.000
N10.0554 (12)0.0342 (9)0.0257 (9)0.0042 (8)0.0204 (8)−0.0020 (7)
N20.0400 (11)0.0327 (9)0.0318 (9)0.0006 (8)0.0132 (8)0.0052 (7)
N30.0641 (14)0.0341 (10)0.0528 (12)−0.0039 (9)0.0340 (11)0.0065 (9)
O10.0589 (10)0.0309 (7)0.0245 (7)0.0071 (7)0.0115 (7)−0.0005 (6)
O20.0612 (10)0.0410 (8)0.0201 (7)0.0046 (7)0.0142 (7)−0.0032 (6)
O30.0529 (9)0.0334 (7)0.0254 (7)0.0071 (6)0.0214 (7)0.0040 (6)
C10.0330 (11)0.0313 (10)0.0254 (10)0.0008 (8)0.0129 (8)−0.0023 (8)
C20.0332 (11)0.0319 (10)0.0227 (10)0.0011 (8)0.0118 (8)−0.0005 (8)
C30.0507 (14)0.0394 (11)0.0271 (10)0.0019 (10)0.0196 (10)0.0012 (9)
C40.0715 (17)0.0337 (11)0.0357 (12)0.0057 (11)0.0250 (12)0.0072 (9)
C50.0686 (16)0.0295 (11)0.0415 (13)0.0051 (10)0.0259 (12)0.0002 (9)
C60.0332 (11)0.0354 (10)0.0243 (10)−0.0003 (9)0.0142 (8)−0.0014 (8)
C70.0446 (13)0.0367 (11)0.0375 (12)0.0002 (10)0.0149 (10)0.0041 (9)
C80.0411 (14)0.0475 (13)0.0471 (14)0.0035 (10)0.0141 (11)0.0018 (10)
C90.0435 (15)0.0493 (14)0.0666 (17)−0.0068 (11)0.0278 (13)−0.0092 (12)

Geometric parameters (Å, °)

Co—O1i2.0684 (13)O2—C61.253 (2)
Co—O12.0684 (13)O3—C11.260 (2)
Co—O3i2.1402 (13)C1—C21.438 (3)
Co—O32.1402 (13)C2—C31.367 (3)
Co—N22.1107 (16)C2—C61.506 (3)
Co—N2i2.1107 (16)C3—C41.401 (3)
N1—C51.357 (3)C3—H3A0.9300
N1—C11.368 (2)C4—C51.348 (3)
N1—H10.8600C4—H40.9300
N2—C71.315 (2)C5—H50.9300
N2—C81.374 (3)C7—H70.9300
N3—C71.339 (3)C8—C91.347 (3)
N3—C91.359 (3)C8—H80.9300
N3—H30.8600C9—H90.9300
O1—C61.258 (2)
O1i—Co—O1179.82 (7)O3—C1—C2126.95 (17)
O1i—Co—N286.54 (6)N1—C1—C2115.31 (16)
O1—Co—N293.59 (6)C3—C2—C1119.33 (17)
O1i—Co—N2i93.59 (6)C3—C2—C6119.94 (16)
O1—Co—N2i86.54 (6)C1—C2—C6120.71 (16)
N2—Co—N2i92.57 (9)C2—C3—C4122.10 (18)
O1i—Co—O3i82.90 (5)C2—C3—H3A119.0
O1—Co—O3i96.97 (5)C4—C3—H3A119.0
N2—Co—O3i168.64 (5)C5—C4—C3118.14 (19)
N2i—Co—O3i92.26 (6)C5—C4—H4120.9
O1i—Co—O396.97 (5)C3—C4—H4120.9
O1—Co—O382.90 (5)C4—C5—N1120.26 (19)
N2—Co—O392.26 (6)C4—C5—H5119.9
N2i—Co—O3168.64 (5)N1—C5—H5119.9
O3i—Co—O384.91 (8)O2—C6—O1122.54 (17)
C5—N1—C1124.81 (17)O2—C6—C2117.41 (17)
C5—N1—H1117.6O1—C6—C2120.05 (16)
C1—N1—H1117.6N2—C7—N3111.4 (2)
C7—N2—C8105.13 (18)N2—C7—H7124.3
C7—N2—Co123.24 (15)N3—C7—H7124.3
C8—N2—Co131.44 (14)C9—C8—N2109.9 (2)
C7—N3—C9107.46 (18)C9—C8—H8125.1
C7—N3—H3126.3N2—C8—H8125.1
C9—N3—H3126.3C8—C9—N3106.1 (2)
C6—O1—Co130.35 (12)C8—C9—H9126.9
C1—O3—Co118.52 (12)N3—C9—H9126.9
O3—C1—N1117.74 (16)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.861.932.789 (2)177
N3—H3···O2iii0.862.042.806 (2)148
C3—H3A···O3iv0.932.433.341 (3)168

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, −y+1, z−1/2; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2743).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626. [PubMed]
  • Quintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783–2791.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258. [PubMed]
  • Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem.26, 1281–1284.
  • Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.
  • Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.
  • Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett.33, 1270–1271.
  • Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m977. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography