PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1758.
Published online 2009 July 4. doi:  10.1107/S1600536809024799
PMCID: PMC2977294

3,6-Dichloro-N-(4-fluoro­phen­yl)picolinamide

Abstract

In the title compound, C12H7Cl2FN2O, the dihedral angle between the phenyl and pyridine rings is 42.5 (2) Å and an intramolecular N—H(...)N hydrogen bond occurs. The crystal structure is stabilized by C—H(...)O, C—H(...)F and C—Cl short contacts.

Related literature

For the chemical and pharmacological properties of amides, see: Liu et al. (2005 [triangle]); Sladowska & Sieklucka-Dziuba (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1758-scheme1.jpg

Experimental

Crystal data

  • C12H7Cl2FN2O
  • M r = 285.10
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1758-efi1.jpg
  • a = 24.921 (2) Å
  • b = 4.3735 (6) Å
  • c = 11.1723 (14) Å
  • V = 1217.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 298 K
  • 0.45 × 0.33 × 0.31 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.796, T max = 0.852
  • 5652 measured reflections
  • 1959 independent reflections
  • 1582 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.140
  • S = 1.08
  • 1959 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 826 Friedel pairs
  • Flack parameter: −0.04 (12)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024799/hg2522sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024799/hg2522Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation of Hunan Institute of Engineering for support.

supplementary crystallographic information

Comment

The chemical and pharmacological properties of acid amides have investigated extensively, owing to their chelating ability with metal ions and to their potentially beneficial chemical and biological activties (Liu et al.,2005; Sladowska et al., 1999). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of 3,6-dichloro-N-(4-fluorophenyl)picolinamide. The C=O bond length is 1.200 (5) Å, indicating that the molecule is in the keto form. In the crystal structure, the molecules are stabilized by intramolecular N—H···N hydrogen bonds and C—H···O, C—H···F, C—Cl short contact.(Table 1 and Fig 2)

Experimental

A solution of 3,6-dichloropicolinoyl chloride(10 mmol) in 50 ml toluene was added to a solution of 4-fluorobenzenamine (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried in vacuo(yield 90%). Elemental analysis calculated:C, 50.55; H, 2.47; N, 9.83%; found: C, 50.52; H, 2.49; N, 9.82%. Crystals were obtained by slow evaporation of a solution in methanol after one week.

Refinement

H atoms were placed geometrically and refined using a riding model, with C—H=0.93 Å,N—H=0.86 Å, respectively, and Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Crystal packing of the title compound, showing the hydrogen bonds as dashed lines

Crystal data

C12H7Cl2FN2OF(000) = 576
Mr = 285.10Dx = 1.555 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1638 reflections
a = 24.921 (2) Åθ = 2.9–27.0°
b = 4.3735 (6) ŵ = 0.53 mm1
c = 11.1723 (14) ÅT = 298 K
V = 1217.7 (2) Å3Block, colorless
Z = 40.45 × 0.33 × 0.31 mm

Data collection

Bruker SMART CCD diffractometer1959 independent reflections
Radiation source: fine-focus sealed tube1582 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −29→26
Tmin = 0.796, Tmax = 0.852k = −5→5
5652 measured reflectionsl = −13→11

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051w = 1/[σ2(Fo2) + (0.0703P)2 + 0.2751P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.21 e Å3
1959 reflectionsΔρmin = −0.20 e Å3
163 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.064 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 826 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.04 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.29548 (4)0.3691 (3)0.97142 (12)0.0657 (4)
Cl20.10409 (7)0.8942 (4)0.69084 (13)0.0830 (5)
N10.14698 (14)0.5722 (9)0.8609 (3)0.0479 (9)
N20.11700 (14)0.2081 (9)1.0330 (3)0.0468 (9)
H20.09850.28170.97470.056*
F1−0.00073 (16)−0.4220 (10)1.3695 (4)0.1088 (14)
O10.20091 (13)0.1700 (12)1.1055 (4)0.0917 (17)
C10.17010 (17)0.2639 (11)1.0316 (4)0.0491 (11)
C20.18767 (17)0.4557 (11)0.9264 (4)0.0449 (11)
C30.24053 (16)0.5164 (10)0.8958 (4)0.0430 (10)
C40.2520 (2)0.7023 (11)0.7983 (4)0.0523 (11)
H40.28730.74390.77710.063*
C50.2098 (2)0.8244 (12)0.7333 (5)0.0566 (12)
H50.21570.95180.66800.068*
C60.15852 (18)0.7482 (11)0.7701 (4)0.0493 (11)
C70.08862 (17)0.0410 (10)1.1205 (4)0.0418 (10)
C80.1042 (2)0.0484 (13)1.2409 (5)0.0595 (13)
H80.13420.15851.26540.071*
C90.0732 (2)−0.1150 (15)1.3226 (5)0.0756 (17)
H90.0829−0.11681.40300.091*
C100.0290 (2)−0.2722 (14)1.2864 (6)0.0714 (16)
C110.0144 (2)−0.2826 (13)1.1691 (6)0.0688 (15)
H11−0.0155−0.39471.14570.083*
C120.04429 (18)−0.1262 (13)1.0851 (5)0.0559 (13)
H120.0346−0.13321.00480.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0458 (6)0.0924 (10)0.0588 (7)0.0066 (6)0.0025 (6)0.0119 (8)
Cl20.0762 (9)0.0970 (11)0.0756 (10)−0.0019 (8)−0.0244 (8)0.0324 (9)
N10.052 (2)0.050 (2)0.042 (2)−0.0034 (18)0.0024 (18)0.0056 (19)
N20.0447 (19)0.055 (2)0.040 (2)−0.0029 (17)−0.0053 (16)0.0082 (18)
F10.110 (3)0.108 (3)0.108 (3)−0.014 (2)0.051 (2)0.036 (2)
O10.048 (2)0.148 (5)0.079 (3)0.003 (2)−0.0076 (18)0.068 (3)
C10.044 (2)0.055 (3)0.048 (3)0.003 (2)0.000 (2)0.007 (2)
C20.047 (2)0.055 (3)0.032 (2)0.005 (2)0.0023 (18)0.000 (2)
C30.049 (2)0.043 (2)0.037 (2)−0.0003 (19)0.0002 (19)−0.0018 (18)
C40.056 (3)0.058 (3)0.043 (3)−0.007 (2)0.009 (2)0.001 (2)
C50.071 (3)0.057 (3)0.042 (3)−0.008 (2)0.001 (2)0.011 (2)
C60.054 (3)0.052 (3)0.042 (3)−0.003 (2)−0.006 (2)0.001 (2)
C70.047 (2)0.037 (2)0.042 (3)0.0010 (19)0.009 (2)0.0005 (19)
C80.054 (3)0.073 (4)0.052 (3)−0.004 (3)0.003 (2)0.005 (3)
C90.082 (4)0.096 (5)0.049 (3)0.008 (3)0.017 (3)0.018 (3)
C100.072 (4)0.065 (4)0.078 (4)0.004 (3)0.034 (3)0.017 (3)
C110.053 (3)0.062 (3)0.092 (5)−0.010 (2)0.017 (3)−0.001 (3)
C120.049 (3)0.062 (3)0.057 (3)−0.007 (2)0.003 (2)−0.002 (2)

Geometric parameters (Å, °)

Cl1—C31.734 (4)C4—H40.9300
Cl2—C61.741 (5)C5—C61.383 (6)
N1—C61.305 (6)C5—H50.9300
N1—C21.351 (6)C7—C121.383 (7)
N2—C11.346 (5)C7—C81.400 (7)
N2—C71.411 (6)C8—C91.393 (7)
N2—H20.8600C8—H80.9300
F1—C101.356 (6)C9—C101.361 (9)
O1—C11.200 (5)C9—H90.9300
C1—C21.508 (6)C10—C111.360 (9)
C2—C31.387 (6)C11—C121.379 (8)
C3—C41.389 (6)C11—H110.9300
C4—C51.385 (7)C12—H120.9300
C6—N1—C2118.6 (4)N1—C6—Cl2116.1 (3)
C1—N2—C7126.5 (4)C5—C6—Cl2118.7 (4)
C1—N2—H2116.7C12—C7—C8120.6 (4)
C7—N2—H2116.7C12—C7—N2118.4 (4)
O1—C1—N2124.0 (4)C8—C7—N2120.9 (4)
O1—C1—C2122.7 (4)C9—C8—C7117.6 (5)
N2—C1—C2113.3 (4)C9—C8—H8121.2
N1—C2—C3120.5 (4)C7—C8—H8121.2
N1—C2—C1114.5 (4)C10—C9—C8120.9 (5)
C3—C2—C1125.1 (4)C10—C9—H9119.5
C2—C3—C4120.1 (4)C8—C9—H9119.5
C2—C3—Cl1124.0 (3)F1—C10—C11119.9 (6)
C4—C3—Cl1115.9 (3)F1—C10—C9118.9 (6)
C5—C4—C3118.7 (4)C11—C10—C9121.3 (5)
C5—C4—H4120.6C10—C11—C12119.7 (5)
C3—C4—H4120.6C10—C11—H11120.2
C6—C5—C4116.9 (5)C12—C11—H11120.2
C6—C5—H5121.6C11—C12—C7119.9 (5)
C4—C5—H5121.6C11—C12—H12120.0
N1—C6—C5125.2 (5)C7—C12—H12120.0
C7—N2—C1—O11.7 (8)C2—N1—C6—Cl2−179.2 (3)
C7—N2—C1—C2−178.8 (4)C4—C5—C6—N10.2 (8)
C6—N1—C2—C3−1.6 (7)C4—C5—C6—Cl2−179.6 (4)
C6—N1—C2—C1178.1 (4)C1—N2—C7—C12−147.3 (5)
O1—C1—C2—N1−172.2 (5)C1—N2—C7—C833.9 (7)
N2—C1—C2—N18.3 (6)C12—C7—C8—C9−0.7 (8)
O1—C1—C2—C37.5 (8)N2—C7—C8—C9178.1 (5)
N2—C1—C2—C3−172.0 (4)C7—C8—C9—C10−0.9 (9)
N1—C2—C3—C41.1 (7)C8—C9—C10—F1−178.5 (5)
C1—C2—C3—C4−178.5 (4)C8—C9—C10—C112.0 (10)
N1—C2—C3—Cl1−178.1 (3)F1—C10—C11—C12179.1 (5)
C1—C2—C3—Cl12.3 (7)C9—C10—C11—C12−1.4 (9)
C2—C3—C4—C50.1 (7)C10—C11—C12—C7−0.2 (8)
Cl1—C3—C4—C5179.3 (4)C8—C7—C12—C111.3 (8)
C3—C4—C5—C6−0.7 (7)N2—C7—C12—C11−177.5 (4)
C2—N1—C6—C50.9 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.172.606 (5)111

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2522).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Liu, W., Li, X. & Zhang, B. (2005). J. Org. Chem.70, 295–297.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sladowska, H. & Sieklucka-Dziuba, M. (1999). Farmaco, 54, 773–779. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography