PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m891.
Published online 2009 July 11. doi:  10.1107/S1600536809026166
PMCID: PMC2977285

Diaqua­(triethano­lamine)copper(II) sulfate monohydrate

Abstract

The asymmetric unit of the title compound, [Cu(C6H15NO3)(H2O)2]SO4·H2O, contains a complex cation, a sulfate anion and one uncoordinated water mol­ecule. In the complex cation, the CuII ion is coordinated by five O atoms (three of which are from the triethano­lamine ligand and two from coordinated water mol­ecules) and one N atom of the triethano­lamine ligand in a typical Jahn–Teller-distorted octa­hedral geometry. Classical inter­molecular O—H(...)O hydrogen bonds link the cation, the sulfate anion and the water mol­ecule into a two-dimensional network.

Related literature

Metal-ion-containing supra­molecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995 [triangle]; Kepert & Rosseinsky, 1999 [triangle]), catalysts (Fujita et al., 1994 [triangle]) and magnetic materials (Kahn, 1993 [triangle]). For related strutures, see: Guo et al. (2009 [triangle]); Haukka et al. (2005 [triangle]); Krabbes et al. (2000 [triangle]); Topcu et al. (2001 [triangle]); Ucar et al. (2004 [triangle]). For comparative bond lengths, see: Yeşilel et al. (2004 [triangle]). İçbudak et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m891-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H15NO3)(H2O)2]SO4·H2O
  • M r = 362.84
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m891-efi1.jpg
  • a = 12.502 (3) Å
  • b = 14.835 (3) Å
  • c = 15.049 (3) Å
  • V = 2791.1 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.76 mm−1
  • T = 293 K
  • 0.46 × 0.43 × 0.28 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.471, T max = 0.619
  • 24803 measured reflections
  • 3180 independent reflections
  • 2903 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.095
  • S = 1.01
  • 3180 reflections
  • 200 parameters
  • 14 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026166/fj2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026166/fj2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province (2008 J0172)

supplementary crystallographic information

Comment

Many workers from a variety of scientific disciplines are interested in the crystal design and engineering of multidimensional arrays and networks containing metal ions as nodes. Metal-ion-containing supramolecular structures can be used as zeolite-like matarials (Venkataraman et al., 1995; Kepert & Rosseinsky, 1999), catalysts (Fujita et al., 1994) or magnetic materials (Kahn, 1993). Triethanolamine(TEA)is a good potential ligand to the incorporation of metals into metal-ion-containing supramolecular framework, and many compounds constructed from TEA have been reported in the last decade (Krabbes et al., 2000; Topcu et al., 2001; Ucar et al., 2004; Haukka et al., 2005;Guo et al., 2009). In this work, we employed TEA and CuSO4 for producing a novel complex, [Cu(C6H15NO3)(H2O)2].SO4.H2O(I).

A view of (I) and its numbering scheme are shown in Fig. 1. The crystal structure consists of a complex cation, one sulfate anion and one lattice water molecue. In the complex cation, the CuII ion is coordinated by five O atoms, in which three from the TEA ligand and two from coordination water molecules, and one N atom of the TEA ligand in a highly distorted octahedral configuration of the CuNO5 type, in which The Cu—O bond lengths and O—Cu—N bond angles are in the range of 1.944 (2)–2.389 (2) Å, 80.30 (7)–175.98 (7)°, respectively. and the Cu—N bond length is of 2.033 (2) Å, which is similar to that of the other related compounds(İçbudak et al., 1995; Yeşilel, et al., 2004). The neutral TEA ligand behaves as a tetradentate ligand using all the donor sites (N1, O1, O2 and O3).

In the crystal structure of (I), classical intermolecular O—H···O hydrogen bonds are observed (Table 2), which link the hydroxies, coordinated water molecues of the cation, sulfate anion and lattice water molecue into a two-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2).

Experimental

CuSO4.5H2O (0.5002 g, 2 mmol) was dissolved in 10 ml water and the pH was adjusted to 8 with triethanolamine. Blue crystals of (I) separated from the filtered solution at room temperature overseveral days.

Refinement

All H atoms bound to carbon were refined using a riding model with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C).Three hydroxy H atoms were located in a difference map and refined with O—H distance restraints of 0.80 (1) A and with Uiso(H) = 1.5Ueq(O).The two coordinated water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O), while the lattice water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.84 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius.
Fig. 2.
View of the 2-D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the a axis; O-H···O interactions are shown as dashed lines.

Crystal data

[Cu(C6H15NO3)(H2O)2]SO4·H2OF(000) = 1512
Mr = 362.84Dx = 1.727 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 24803 reflections
a = 12.502 (3) Åθ = 3.1–27.4°
b = 14.835 (3) ŵ = 1.76 mm1
c = 15.049 (3) ÅT = 293 K
V = 2791.1 (10) Å3Block, blue
Z = 80.46 × 0.43 × 0.28 mm

Data collection

Siemens SMART CCD area-detector diffractometer3180 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→15
Tmin = 0.471, Tmax = 0.619k = −17→19
24803 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095w = 1/[σ2(Fo2) + (0.062P)2 + 2.0253P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3180 reflectionsΔρmax = 0.66 e Å3
200 parametersΔρmin = −0.53 e Å3
14 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.817285 (19)0.161186 (16)0.563698 (16)0.02242 (12)
N10.79877 (14)0.28534 (12)0.50841 (12)0.0263 (4)
O10.72865 (15)0.24227 (11)0.67944 (11)0.0355 (4)
H1C0.6857 (19)0.2171 (19)0.7100 (18)0.043*
O20.87331 (18)0.13070 (13)0.42137 (12)0.0449 (4)
H2C0.902 (2)0.0986 (19)0.3874 (18)0.054*
O30.96021 (12)0.20915 (11)0.59952 (11)0.0327 (4)
H3C0.992 (2)0.1803 (16)0.6366 (15)0.039*
O40.67091 (12)0.11906 (11)0.52784 (11)0.0303 (3)
H4C0.636 (2)0.0983 (19)0.5697 (12)0.036*
H4D0.668 (2)0.0999 (17)0.4809 (10)0.036*
O50.84098 (12)0.04673 (10)0.62306 (11)0.0295 (3)
H5C0.8032 (16)0.0406 (13)0.6761 (12)0.035*
H5D0.9054 (12)0.0446 (18)0.6411 (16)0.035*
O61.07432 (17)0.14707 (12)0.73118 (14)0.0482 (5)
O71.02862 (13)−0.00389 (11)0.68697 (11)0.0368 (4)
O81.20422 (14)0.02931 (15)0.74339 (13)0.0488 (5)
O91.05504 (15)0.03349 (14)0.84170 (11)0.0474 (5)
C10.6991 (2)0.32729 (17)0.54436 (19)0.0353 (5)
H1A0.63760.29390.52280.042*
H1B0.69340.38860.52240.042*
C20.6971 (2)0.32862 (16)0.64443 (18)0.0368 (5)
H2A0.74540.37480.66610.044*
H2B0.62550.34320.66480.044*
C30.7865 (2)0.27310 (17)0.41066 (15)0.0374 (5)
H3A0.79080.33150.38180.045*
H3B0.71640.24800.39840.045*
C40.8714 (3)0.21142 (19)0.37171 (16)0.0453 (6)
H4A0.85510.19840.31000.054*
H4B0.94090.24050.37430.054*
C50.8955 (2)0.34057 (14)0.52931 (17)0.0334 (5)
H5A0.87420.40260.53930.040*
H5B0.94380.33950.47880.040*
C60.95341 (18)0.30592 (15)0.61051 (15)0.0323 (5)
H6A1.02430.33220.61450.039*
H6B0.91400.32090.66410.039*
S11.09031 (4)0.05082 (3)0.75083 (3)0.02484 (15)
O1W0.65014 (16)0.0231 (2)0.38367 (16)0.0664 (7)
H1WA0.6900 (18)−0.002 (3)0.3429 (19)0.080*
H1WB0.5855 (10)0.012 (3)0.370 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02221 (17)0.02101 (17)0.02405 (17)−0.00087 (9)−0.00356 (8)0.00115 (8)
N10.0297 (9)0.0254 (8)0.0237 (8)0.0019 (7)−0.0029 (6)0.0020 (7)
O10.0411 (9)0.0307 (8)0.0348 (9)−0.0030 (7)0.0084 (7)0.0015 (6)
O20.0641 (13)0.0379 (10)0.0328 (9)0.0127 (9)0.0087 (8)−0.0050 (7)
O30.0293 (8)0.0305 (8)0.0383 (9)−0.0047 (6)−0.0108 (6)0.0063 (6)
O40.0286 (8)0.0330 (9)0.0292 (8)−0.0045 (6)−0.0041 (6)−0.0027 (6)
O50.0237 (7)0.0276 (8)0.0371 (9)0.0004 (6)−0.0019 (6)0.0064 (6)
O60.0613 (12)0.0291 (8)0.0541 (11)−0.0006 (8)−0.0309 (10)0.0031 (8)
O70.0305 (8)0.0368 (8)0.0432 (9)0.0059 (7)−0.0116 (7)−0.0122 (7)
O80.0234 (8)0.0750 (13)0.0480 (11)0.0101 (9)−0.0048 (7)−0.0188 (10)
O90.0400 (10)0.0720 (13)0.0301 (9)−0.0181 (9)0.0007 (7)0.0043 (8)
C10.0351 (12)0.0285 (11)0.0422 (13)0.0086 (9)−0.0014 (10)−0.0001 (9)
C20.0402 (13)0.0274 (11)0.0430 (14)0.0027 (9)0.0075 (10)−0.0052 (9)
C30.0494 (13)0.0395 (12)0.0232 (10)0.0049 (11)−0.0083 (10)0.0048 (9)
C40.0582 (16)0.0522 (15)0.0254 (11)0.0055 (13)0.0059 (11)0.0023 (10)
C50.0384 (13)0.0261 (10)0.0357 (12)−0.0080 (9)−0.0042 (10)0.0078 (8)
C60.0334 (11)0.0307 (11)0.0328 (11)−0.0092 (9)−0.0050 (9)0.0015 (8)
S10.0206 (3)0.0285 (3)0.0254 (3)0.00207 (19)−0.00341 (16)−0.00080 (18)
O1W0.0345 (10)0.1096 (19)0.0551 (13)−0.0124 (12)0.0036 (9)−0.0468 (13)

Geometric parameters (Å, °)

Cu1—O51.9414 (15)O7—S11.4755 (16)
Cu1—O31.9975 (16)O8—S11.4638 (18)
Cu1—O42.0076 (16)O9—S11.4596 (18)
Cu1—N12.0343 (18)C1—C21.506 (4)
Cu1—O22.2984 (18)C1—H1A0.9700
Cu1—O12.3893 (17)C1—H1B0.9700
N1—C31.490 (3)C2—H2A0.9700
N1—C51.494 (3)C2—H2B0.9700
N1—C11.495 (3)C3—C41.519 (4)
O1—C21.440 (3)C3—H3A0.9700
O1—H1C0.800 (10)C3—H3B0.9700
O2—C41.412 (3)C4—H4A0.9700
O2—H2C0.788 (10)C4—H4B0.9700
O3—C61.448 (3)C5—C61.510 (3)
O3—H3C0.810 (10)C5—H5A0.9700
O4—H4C0.825 (15)C5—H5B0.9700
O4—H4D0.762 (13)C6—H6A0.9700
O5—H5C0.931 (14)C6—H6B0.9700
O5—H5D0.851 (16)O1W—H1WA0.871 (9)
O6—S11.4717 (18)O1W—H1WB0.851 (10)
O5—Cu1—O392.92 (7)C2—C1—H1B109.1
O5—Cu1—O489.46 (7)H1A—C1—H1B107.9
O3—Cu1—O4177.25 (7)O1—C2—C1110.46 (19)
O5—Cu1—N1175.92 (7)O1—C2—H2A109.6
O3—Cu1—N183.66 (7)C1—C2—H2A109.6
O4—Cu1—N193.91 (7)O1—C2—H2B109.6
O5—Cu1—O2102.14 (7)C1—C2—H2B109.6
O3—Cu1—O292.81 (8)H2A—C2—H2B108.1
O4—Cu1—O288.05 (8)N1—C3—C4112.50 (19)
N1—Cu1—O280.31 (7)N1—C3—H3A109.1
O5—Cu1—O1100.12 (6)C4—C3—H3A109.1
O3—Cu1—O192.23 (7)N1—C3—H3B109.1
O4—Cu1—O185.98 (7)C4—C3—H3B109.1
N1—Cu1—O177.85 (6)H3A—C3—H3B107.8
O2—Cu1—O1156.89 (6)O2—C4—C3108.6 (2)
C3—N1—C5110.95 (18)O2—C4—H4A110.0
C3—N1—C1108.82 (18)C3—C4—H4A110.0
C5—N1—C1111.76 (18)O2—C4—H4B110.0
C3—N1—Cu1107.77 (14)C3—C4—H4B110.0
C5—N1—Cu1108.55 (13)H4A—C4—H4B108.4
C1—N1—Cu1108.89 (14)N1—C5—C6111.81 (17)
C2—O1—Cu1107.96 (13)N1—C5—H5A109.3
C2—O1—H1C116 (2)C6—C5—H5A109.3
Cu1—O1—H1C120 (2)N1—C5—H5B109.3
C4—O2—Cu1108.75 (14)C6—C5—H5B109.3
C4—O2—H2C100 (3)H5A—C5—H5B107.9
Cu1—O2—H2C150 (3)O3—C6—C5105.85 (17)
C6—O3—Cu1109.37 (12)O3—C6—H6A110.6
C6—O3—H3C118 (2)C5—C6—H6A110.6
Cu1—O3—H3C116 (2)O3—C6—H6B110.6
Cu1—O4—H4C113.1 (19)C5—C6—H6B110.6
Cu1—O4—H4D114 (2)H6A—C6—H6B108.7
H4C—O4—H4D123 (2)O9—S1—O8109.10 (12)
Cu1—O5—H5C113.7 (10)O9—S1—O6108.55 (13)
Cu1—O5—H5D108.9 (18)O8—S1—O6109.17 (13)
H5C—O5—H5D101.7 (15)O9—S1—O7110.82 (11)
N1—C1—C2112.4 (2)O8—S1—O7109.80 (10)
N1—C1—H1A109.1O6—S1—O7109.38 (10)
C2—C1—H1A109.1H1WA—O1W—H1WB107.0 (15)
N1—C1—H1B109.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8i0.87 (1)1.90 (1)2.753 (3)166 (3)
O1—H1C···O6ii0.80 (1)1.95 (1)2.744 (2)172 (3)
O1W—H1WB···O9iii0.85 (1)1.93 (1)2.772 (3)171 (4)
O2—H2C···O7i0.79 (1)1.99 (1)2.775 (2)172 (4)
O3—H3C···O60.81 (1)1.82 (1)2.609 (2)164 (3)
O4—H4C···O9ii0.83 (2)1.93 (2)2.750 (2)172 (3)
O4—H4D···O1W0.76 (1)1.87 (2)2.608 (3)164 (3)
O5—H5D···O70.85 (2)1.83 (2)2.644 (2)158 (3)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+3/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2232).

References

  • Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc.116, 1151–1152.
  • Guo, H.-X., Du, Z.-X. & Li, X.-Z. (2009). Acta Cryst. E65, m810–m811. [PMC free article] [PubMed]
  • Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.
  • İçbudak, H., Yilmaz, V. T., Howie, R. A., Andaç, Ö. & Ölmez, H. (1995). Acta Cryst. C51, 1759–1761.
  • Kahn, O. (1993). Molecular Magnetism New York: VCH.
  • Kepert, C. J. & Rosseinsky, M. J. (1999). Chem. Commun.1, 31–32.
  • Krabbes, I., Seichter, W. & Gloe, K. (2000). Acta Cryst. C56, e178. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Topcu, Y., Andac, O., Yilmaz, V. T. & Harrison, W. T. A. (2001). Acta Cryst. E57, m82–m84.
  • Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324. [PubMed]
  • Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc.117, 11600–11601.
  • Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography