PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m980.
Published online 2009 July 25. doi:  10.1107/S1600536809028645
PMCID: PMC2977284

Bis[5-(2-naphth­yl)-1H-pyrazole-κN 2]silver(I) nitrate

Abstract

The Ag atom in the title compound, [Ag(C13H10N2)2]NO3, shows an approximately linear coordination [N–Ag–N 162.6 (4)°]. The coordination geometry is distorted towards square-planar owing to two long Ag(...)O inter­actions [Ag(...)O = 2.634 (15) and 2.861 (13) Å]. In the crystal structure, the Ag atom lies on a special position of 2 site symmetry; the nitrate anion is disordered about the special position. The crystal under investigation was a racemic twin with a 33% minor twin component.

Related literature

This structure is the first report of a metal complex of the 5-(2-naphthyl)-1H-pyrazole; for the synthesis of this N-heterocycle, see: Yang & Raptis (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m980-scheme1.jpg

Experimental

Crystal data

  • [Ag(C13H10N2)2]NO3
  • M r = 558.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m980-efi1.jpg
  • a = 13.911 (6) Å
  • b = 7.340 (1) Å
  • c = 12.669 (5) Å
  • β = 113.43 (2)°
  • V = 1186.9 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 291 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.843, T max = 0.871
  • 2268 measured reflections
  • 2056 independent reflections
  • 1752 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.174
  • S = 1.09
  • 2056 reflections
  • 179 parameters
  • 32 restraints
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 353 Friedel pairs
  • Flack parameter: 0.33 (8)

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028645/xu2561sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028645/xu2561Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Education Department of Henan Province, Zhengzhou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

3-(2-Naphthyl)pyrazole was prepared according to the literature method (Yang & Raptis, 2003). An acetonitrile solution (2 ml) of silver nitrate (0.02 mmol, 3.4 mg) was mixed with an ethanol solution (1 ml) of 3-(2-naphthyl)pyrazole (0.02 mmol, 4 mg). The pH value of the mixture was adjusted to about 5 by dilute nitric acid. The resulting solution was allowed to evaporate for two weeks to yield colorless crystals in 60% yield.

Refinement

The measurements are complete to 94% at a 2θ of 55 °, but are complete to 98% at a 2θ of 50 °.

The nitrate group is disordered about the twofold rotation axis; the anion was allowed to refine off the symmetry element. The three N–O distances were restrained to within 0.01 Å of each other, as were the three O···O distances. The four atoms were restrained to be nearly planar, and their anisotropic temperature factors were restrained to be nearly isotropic. Carbon-bound H atoms were placed in calculated positions [C—H = 0.93, N–H 0.89 Å; U(H) = 1.2Ueq(C,N)].

The crystal under investigation is a racemic twin; the explicit refinement of the Flack parameter gave a minor twin component of 33%.

Figures

Fig. 1.
Thermal ellipsoid plot of the [Ag(C13H10N2)2][NO3], displacement ellipsoids are drawn at the 50% probability level. The nitrate anion is disordered about a special position; the disorder is not shown.

Crystal data

[Ag(C13H10N2)2]NO3F(000) = 564
Mr = 558.34Dx = 1.562 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2056 reflections
a = 13.911 (6) Åθ = 1.8–27.5°
b = 7.340 (1) ŵ = 0.89 mm1
c = 12.669 (5) ÅT = 291 K
β = 113.43 (2)°Block, colorless
V = 1186.9 (7) Å30.20 × 0.18 × 0.16 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer2056 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
graphiteRint = 0.061
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −17→8
Tmin = 0.843, Tmax = 0.871k = −9→7
2268 measured reflectionsl = −14→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061w = 1/[σ2(Fo2) + (0.1009P)2 + 2.0218P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.36 e Å3
2056 reflectionsΔρmin = −0.48 e Å3
179 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
32 restraintsExtinction coefficient: 0.010 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 353 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.33 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.50000.5000 (2)0.50000.0696 (4)
O10.5305 (13)0.8398 (18)0.4537 (12)0.079 (4)0.50
O20.4805 (13)1.1184 (16)0.4497 (12)0.078 (4)0.50
O30.4805 (13)0.9378 (17)0.5844 (11)0.079 (4)0.50
N10.6133 (6)0.4563 (10)0.4293 (6)0.060 (2)
N20.6235 (6)0.2913 (10)0.3832 (6)0.0565 (16)
H20.58920.19070.38680.068*
N30.4971 (9)0.9654 (11)0.4961 (9)0.062 (3)0.50
C10.6779 (7)0.5684 (15)0.4085 (8)0.068 (2)
H10.68790.68980.43120.082*
C20.7299 (7)0.479 (3)0.3471 (7)0.068 (3)
H2A0.77880.52970.32250.082*
C30.6928 (7)0.3009 (12)0.3311 (7)0.0546 (18)
C40.7151 (6)0.1443 (12)0.2722 (7)0.0537 (18)
C50.6475 (6)−0.008 (3)0.2316 (6)0.0616 (18)
H50.5874−0.01570.24670.074*
C60.6685 (8)−0.1416 (16)0.1720 (8)0.070 (2)
H60.6211−0.23670.14310.084*
C70.7620 (8)−0.1405 (17)0.1522 (8)0.067 (2)
C80.7883 (9)−0.282 (2)0.0913 (9)0.080 (3)
H80.7440−0.38210.06390.096*
C90.8788 (10)−0.271 (2)0.0733 (9)0.096 (4)
H90.8948−0.36370.03280.115*
C100.9456 (8)−0.130 (3)0.1125 (10)0.094 (4)
H101.0069−0.12750.09970.113*
C110.9243 (6)0.009 (4)0.1703 (6)0.082 (3)
H110.97190.10390.19660.098*
C120.8311 (6)0.014 (3)0.1924 (6)0.060 (2)
C130.8064 (6)0.1497 (16)0.2520 (8)0.063 (2)
H130.85190.24790.27950.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0884 (6)0.0661 (6)0.0753 (6)0.0000.0547 (5)0.000
O10.077 (7)0.070 (8)0.097 (8)0.012 (6)0.043 (6)−0.013 (7)
O20.089 (8)0.058 (7)0.093 (8)0.009 (6)0.043 (7)0.006 (6)
O30.085 (7)0.088 (9)0.076 (7)0.007 (6)0.045 (6)0.005 (6)
N10.076 (4)0.052 (6)0.062 (4)0.002 (3)0.039 (3)−0.003 (3)
N20.072 (4)0.050 (4)0.056 (4)−0.001 (3)0.034 (4)−0.004 (3)
N30.054 (4)0.071 (9)0.067 (5)0.001 (10)0.029 (4)−0.005 (10)
C10.071 (5)0.074 (6)0.060 (5)−0.009 (4)0.027 (4)−0.003 (4)
C20.068 (4)0.072 (9)0.068 (4)−0.003 (6)0.033 (3)0.001 (6)
C30.060 (4)0.057 (4)0.054 (4)0.001 (3)0.029 (4)0.004 (3)
C40.055 (4)0.053 (4)0.058 (5)0.005 (3)0.028 (4)0.009 (4)
C50.071 (4)0.060 (5)0.067 (4)0.008 (7)0.041 (3)0.006 (8)
C60.075 (5)0.074 (6)0.064 (6)−0.004 (5)0.031 (5)0.002 (5)
C70.077 (5)0.085 (7)0.048 (5)0.008 (5)0.034 (4)0.004 (4)
C80.090 (6)0.089 (8)0.068 (5)0.011 (6)0.037 (5)−0.017 (6)
C90.108 (9)0.124 (11)0.065 (6)0.030 (8)0.043 (6)−0.015 (7)
C100.053 (5)0.160 (14)0.066 (6)0.022 (6)0.019 (5)−0.023 (7)
C110.053 (4)0.141 (10)0.055 (4)0.004 (10)0.024 (3)−0.018 (11)
C120.056 (3)0.081 (7)0.044 (3)0.002 (7)0.021 (3)0.003 (7)
C130.051 (4)0.091 (7)0.056 (5)−0.001 (4)0.032 (4)−0.004 (4)

Geometric parameters (Å, °)

Ag1—N1i2.124 (7)C4—C51.42 (2)
Ag1—N12.124 (7)C5—C61.34 (2)
Ag1—O12.634 (15)C5—H50.9300
Ag1—O2ii2.861 (13)C6—C71.419 (13)
O1—N31.246 (10)C6—H60.9300
O2—N31.245 (10)C7—C81.427 (15)
O3—N31.246 (10)C7—C121.44 (2)
N1—C11.319 (12)C8—C91.369 (17)
N1—N21.375 (10)C8—H80.9300
N2—C31.370 (11)C9—C101.35 (2)
N2—H20.8900C9—H90.9300
C1—C21.416 (16)C10—C111.35 (3)
C1—H10.9300C10—H100.9300
C2—C31.39 (2)C11—C121.432 (10)
C2—H2A0.9300C11—H110.9300
C3—C41.469 (12)C12—C131.38 (2)
C4—C131.393 (11)C13—H130.9300
N1i—Ag1—N1162.6 (4)C6—C5—C4121.3 (7)
N1i—Ag1—O1116.7 (4)C6—C5—H5119.4
N1—Ag1—O180.6 (4)C4—C5—H5119.4
N1i—Ag1—O2ii85.7 (4)C5—C6—C7121.2 (10)
N1—Ag1—O2ii77.2 (4)C5—C6—H6119.4
O1—Ag1—O2ii152.4 (5)C7—C6—H6119.4
N3—O1—Ag1119.0 (7)C6—C7—C8122.8 (11)
C1—N1—N2105.7 (7)C6—C7—C12118.1 (10)
C1—N1—Ag1131.9 (7)C8—C7—C12119.1 (9)
N2—N1—Ag1122.0 (5)C9—C8—C7119.8 (12)
C3—N2—N1111.7 (7)C9—C8—H8120.1
C3—N2—H2124.1C7—C8—H8120.1
N1—N2—H2124.1C10—C9—C8122.0 (11)
O2—N3—O1119.7 (7)C10—C9—H9119.0
O2—N3—O3120.3 (7)C8—C9—H9119.0
O1—N3—O3120.0 (7)C11—C10—C9120.7 (11)
N1—C1—C2111.1 (12)C11—C10—H10119.6
N1—C1—H1124.5C9—C10—H10119.6
C2—C1—H1124.5C10—C11—C12122 (2)
C3—C2—C1105.8 (9)C10—C11—H11118.8
C3—C2—H2A127.1C12—C11—H11118.8
C1—C2—H2A127.1C13—C12—C11124.7 (18)
C2—C3—N2105.6 (7)C13—C12—C7119.2 (7)
C2—C3—C4132.0 (7)C11—C12—C7116.1 (17)
N2—C3—C4122.4 (8)C12—C13—C4121.7 (10)
C13—C4—C5118.4 (8)C12—C13—H13119.2
C13—C4—C3117.6 (8)C4—C13—H13119.2
C5—C4—C3123.9 (8)
N1i—Ag1—O1—N315.5 (10)C2—C3—C4—C5−158.6 (11)
N1—Ag1—O1—N3−166.2 (9)N2—C3—C4—C520.6 (14)
O2ii—Ag1—O1—N3157.0 (11)C13—C4—C5—C6−2.1 (16)
N1i—Ag1—N1—C1−170.0 (8)C3—C4—C5—C6175.7 (10)
O1—Ag1—N1—C115.2 (9)C4—C5—C6—C73.3 (17)
O2ii—Ag1—N1—C1178.7 (9)C5—C6—C7—C8178.5 (11)
N1i—Ag1—N1—N217.3 (6)C5—C6—C7—C12−3.4 (15)
O1—Ag1—N1—N2−157.4 (8)C6—C7—C8—C9178.8 (10)
O2ii—Ag1—N1—N26.0 (6)C12—C7—C8—C90.8 (16)
C1—N1—N2—C3−1.4 (10)C7—C8—C9—C100.7 (19)
Ag1—N1—N2—C3173.0 (5)C8—C9—C10—C11−1(2)
Ag1—O1—N3—O2−157.6 (9)C9—C10—C11—C120(2)
Ag1—O1—N3—O322.4 (10)C10—C11—C12—C13179.1 (13)
N2—N1—C1—C20.9 (10)C10—C11—C12—C72(2)
Ag1—N1—C1—C2−172.6 (6)C6—C7—C12—C132.5 (16)
N1—C1—C2—C3−0.2 (11)C8—C7—C12—C13−179.5 (11)
C1—C2—C3—N2−0.7 (10)C6—C7—C12—C11−179.9 (11)
C1—C2—C3—C4178.6 (9)C8—C7—C12—C11−1.8 (16)
N1—N2—C3—C21.3 (10)C11—C12—C13—C4−178.8 (12)
N1—N2—C3—C4−178.1 (8)C7—C12—C13—C4−1.4 (17)
C2—C3—C4—C1319.2 (15)C5—C4—C13—C121.2 (15)
N2—C3—C4—C13−161.6 (8)C3—C4—C13—C12−176.7 (10)

Symmetry codes: (i) −x+1, y, −z+1; (ii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.892.042.76 (2)137
N2—H2···O3iii0.892.193.08 (2)173

Symmetry codes: (ii) x, y−1, z; (iii) −x+1, y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2561).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem.40, 659–664.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography