PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m892–m893.
Published online 2009 July 11. doi:  10.1107/S1600536809026038
PMCID: PMC2977283

Bromidobis(N,N′-diphenyl­thio­urea-κS)copper(I) monohydrate

Abstract

In the title compound, [CuBr(C13H12N2S)2]·H2O, the CuI atom adopts a slightly distorted trigonal-planar coordination arising from two S atoms of two diphenyl­thio­urea ligands and a bromide ion. There are two intra­molecular N—H(...)Br hydrogen bonds completing twisted six-membered rings with R(6) motifs. The dihedral angles between the aromatic rings in the ligands are 62.11 (13) and 85.73 (13)°. In the crystal, components are linked by N—H(...)O, O—H(...)S and O—H(...)π inter­actions. There also exist π–π inter­actions with a distance of 3.876 (2) Å between the centroids of benzene rings of two different ligands. Together, the inter­molecular inter­actions lead to a three-dimensional network.

Related literature

For related structures, see: Khan et al. (2007 [triangle]); Mufakkar et al. (2007 [triangle]); Zoufalá et al. (2007 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m892-scheme1.jpg

Experimental

Crystal data

  • [CuBr(C13H12N2S)2]·H2O
  • M r = 618.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m892-efi1.jpg
  • a = 9.6195 (5) Å
  • b = 12.1937 (6) Å
  • c = 12.7969 (6) Å
  • α = 89.345 (2)°
  • β = 73.154 (1)°
  • γ = 69.225 (2)°
  • V = 1336.20 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.50 mm−1
  • T = 296 K
  • 0.28 × 0.23 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.509, T max = 0.606
  • 27804 measured reflections
  • 6568 independent reflections
  • 5426 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.122
  • S = 1.04
  • 6568 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −1.27 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026038/hb5021sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026038/hb5021Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

supplementary crystallographic information

Comment

The crystal structure of tetrakis(N-methylthiourea-S)copper(I) iodide (Mufakkar et al., 2007)), tris(N,N'-dibutylthiourea-S)iodidocopper(I) 0.6-hydrate (Khan et al., 2007) and tetrakis(N-methylthiourea)copper(I) chloride (Zoufalá et al., 2007) have been reported by our group containing substituted thiourea. In continuation to the copper complexes of substituted thiourea, the title compound (I), (Fig. 1) is now reported.

In (I), the copper atom is coordinated to two S-atoms of two diphenylthiourea ligands and the Br-atom. Cu1 is at a distance of -0.0061 (5) Å from the plane of S1/S2/BR1. In one ligand the benzene rings A (C2—C7) and B (C8—C13) make a dihedral angle of 85.73 (13)°, whereas in the other ligand the benzene rings C (C15—C20) and D (C21—C26) are oriented at dihedral angle of 62.11 (13)°. There exist two intramolecular H-bonds of N–H···Br type, completing two twisted six membered rings with ring motifs R11(6) (Bernstein et al., 1995). The NH-groups not involving in H-bonding with Br-atom, make intermolecular H-bonds with O-atom of water. It is interesting that only one H-atom of water molecule make H-bonding with one of S-atom, whereas the other make a π interaction (Table 1). There exist π–π interactions between CgA···CgCi [symmetry code: i = -1 + x, y, 1 + z] and CgC···CgAii [symmetry code: ii = 1 + x, y, -1 + z] at a distance of 3.876 (2) Å, where CgA and CgC are the centroids of benzene rings A and C, respectively. The molecules are linked each other through H-bonding in the form of three dimensional polymeric network.

Experimental

Copper(I) bromide (0.14 g, 1.0 mmol) was dissolved in 15 ml of acetonitrile and it was added to two equivalents of N,N'-diphenylthiourea in acetonitrile. White precipitate formed immediately were filtered and the filtrate was kept for crystallization. As a result colourless prisms of (I) were obtained after 24 h.

Refinement

The H-atoms were positioned geometrically, with N—H = 0.86 Å for NH-groups and C—H = 0.93 Å for aromatic rings. After this the H-atoms of water molecule were taken from difference Fourier map in two steps. All the H-atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.
Fig. 2.
The partial packing of (I), showing that molecules form ring motifs and form three dimensional polymeric network.

Crystal data

[CuBr(C13H12N2S)2]·H2OZ = 2
Mr = 618.08F(000) = 628
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6195 (5) ÅCell parameters from 6568 reflections
b = 12.1937 (6) Åθ = 2.3–28.3°
c = 12.7969 (6) ŵ = 2.50 mm1
α = 89.345 (2)°T = 296 K
β = 73.154 (1)°Prismatic, colourless
γ = 69.225 (2)°0.28 × 0.23 × 0.20 mm
V = 1336.20 (11) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer6568 independent reflections
Radiation source: fine-focus sealed tube5426 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −16→16
Tmin = 0.509, Tmax = 0.606l = −17→15
27804 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0609P)2 + 1.6374P] where P = (Fo2 + 2Fc2)/3
6568 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −1.27 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.33324 (5)0.31120 (3)0.30610 (3)0.0533 (1)
Cu10.44586 (4)0.10611 (3)0.26717 (3)0.0365 (1)
S10.38543 (9)−0.02233 (6)0.37916 (6)0.0371 (2)
S20.62984 (9)0.00799 (6)0.11533 (5)0.0363 (2)
N10.1849 (3)−0.0049 (2)0.57745 (18)0.0329 (6)
N20.2381 (3)0.1621 (2)0.52856 (18)0.0332 (7)
N30.7569 (3)0.0539 (2)−0.08459 (18)0.0333 (6)
N40.5479 (3)0.2083 (2)0.02461 (19)0.0340 (7)
C10.2624 (3)0.0486 (2)0.5043 (2)0.0285 (7)
C20.2046 (3)−0.1261 (2)0.5679 (2)0.0296 (7)
C30.0747 (4)−0.1555 (3)0.5850 (3)0.0389 (9)
C40.0924 (5)−0.2732 (3)0.5780 (3)0.0513 (11)
C50.2378 (5)−0.3602 (3)0.5535 (4)0.0632 (13)
C60.3667 (5)−0.3298 (3)0.5391 (4)0.0621 (13)
C70.3512 (4)−0.2133 (3)0.5473 (3)0.0448 (10)
C80.1611 (3)0.2336 (2)0.6302 (2)0.0312 (8)
C90.0889 (4)0.3536 (3)0.6266 (3)0.0481 (10)
C100.0182 (5)0.4277 (3)0.7237 (3)0.0619 (13)
C110.0184 (5)0.3834 (3)0.8227 (3)0.0564 (11)
C120.0909 (4)0.2642 (3)0.8259 (3)0.0449 (10)
C130.1640 (4)0.1892 (3)0.7301 (2)0.0376 (8)
C140.6462 (3)0.0959 (2)0.0114 (2)0.0284 (7)
C150.8697 (3)−0.0636 (3)−0.1082 (2)0.0321 (7)
C160.8232 (4)−0.1582 (3)−0.1121 (3)0.0410 (9)
C170.9331 (5)−0.2719 (3)−0.1320 (3)0.0536 (11)
C181.0894 (4)−0.2896 (3)−0.1513 (3)0.0552 (11)
C191.1351 (4)−0.1968 (3)−0.1499 (3)0.0533 (10)
C201.0255 (3)−0.0819 (3)−0.1277 (3)0.0413 (9)
C210.5400 (3)0.2845 (2)−0.0615 (2)0.0337 (8)
C220.4526 (4)0.2811 (3)−0.1278 (3)0.0557 (12)
C230.4443 (5)0.3550 (4)−0.2108 (4)0.0703 (17)
C240.5207 (5)0.4323 (3)−0.2251 (3)0.0628 (14)
C250.6103 (5)0.4334 (4)−0.1598 (4)0.0647 (14)
C260.6218 (5)0.3594 (3)−0.0775 (3)0.0514 (11)
O10.1532 (3)0.8554 (2)0.29920 (19)0.0501 (8)
H1N0.116730.037850.635660.0395*
H2N0.274830.196540.474310.0399*
H3−0.02407−0.096780.601120.0466*
H3N0.760770.10051−0.135420.0399*
H40.00491−0.293440.590050.0615*
H4N0.485080.236790.089330.0408*
H50.24930−0.438990.546600.0755*
H60.46526−0.388720.523670.0746*
H70.43836−0.193410.539040.0537*
H90.087890.384130.559800.0576*
H10−0.029920.508310.721710.0742*
H11−0.030260.433680.887440.0678*
H120.090720.234120.893050.0539*
H130.215040.109090.732460.0452*
H160.71862−0.14548−0.101420.0492*
H170.90225−0.33603−0.132320.0645*
H181.16340−0.36590−0.165260.0663*
H191.24041−0.20984−0.163950.0639*
H201.05705−0.01834−0.125950.0495*
H220.399070.22959−0.117360.0667*
H230.386460.35207−0.256970.0844*
H240.511770.48381−0.279010.0757*
H250.664220.48465−0.170830.0781*
H260.683640.36004−0.033680.0618*
H1O0.222820.869570.316210.0601*
H2O0.191510.785370.297070.0601*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0631 (2)0.0397 (2)0.0533 (2)−0.0185 (2)−0.0129 (2)0.0145 (2)
Cu10.0378 (2)0.0381 (2)0.0288 (2)−0.0137 (2)−0.0038 (1)0.0081 (1)
S10.0439 (4)0.0281 (3)0.0275 (3)−0.0113 (3)0.0041 (3)0.0020 (2)
S20.0398 (4)0.0300 (3)0.0285 (3)−0.0075 (3)−0.0020 (3)0.0107 (3)
N10.0369 (12)0.0270 (11)0.0266 (10)−0.0108 (10)0.0011 (9)0.0016 (8)
N20.0428 (13)0.0266 (11)0.0262 (10)−0.0131 (10)−0.0043 (9)0.0043 (8)
N30.0330 (11)0.0321 (12)0.0272 (10)−0.0096 (10)−0.0013 (9)0.0078 (9)
N40.0356 (12)0.0284 (11)0.0280 (11)−0.0072 (10)−0.0010 (9)0.0072 (9)
C10.0285 (12)0.0262 (12)0.0266 (12)−0.0073 (10)−0.0060 (9)0.0046 (9)
C20.0346 (13)0.0298 (13)0.0237 (11)−0.0129 (11)−0.0065 (10)0.0062 (9)
C30.0377 (15)0.0432 (16)0.0379 (15)−0.0174 (13)−0.0118 (12)0.0095 (12)
C40.061 (2)0.055 (2)0.0535 (19)−0.0380 (18)−0.0198 (16)0.0120 (16)
C50.081 (3)0.0372 (18)0.070 (2)−0.0297 (19)−0.011 (2)0.0072 (17)
C60.052 (2)0.0324 (17)0.082 (3)−0.0068 (15)−0.0023 (19)0.0101 (17)
C70.0370 (15)0.0352 (16)0.0577 (19)−0.0126 (13)−0.0093 (14)0.0148 (14)
C80.0323 (13)0.0262 (13)0.0332 (13)−0.0089 (10)−0.0093 (10)0.0003 (10)
C90.066 (2)0.0290 (15)0.0455 (17)−0.0106 (14)−0.0203 (16)0.0045 (12)
C100.079 (3)0.0293 (16)0.061 (2)0.0008 (17)−0.023 (2)−0.0063 (15)
C110.063 (2)0.0451 (19)0.0463 (19)−0.0051 (17)−0.0126 (16)−0.0163 (15)
C120.0524 (18)0.0476 (18)0.0328 (14)−0.0154 (15)−0.0138 (13)0.0001 (13)
C130.0428 (16)0.0317 (14)0.0340 (14)−0.0082 (12)−0.0122 (12)0.0029 (11)
C140.0277 (12)0.0293 (13)0.0276 (12)−0.0115 (10)−0.0064 (9)0.0066 (10)
C150.0318 (13)0.0350 (14)0.0234 (11)−0.0086 (11)−0.0040 (10)0.0025 (10)
C160.0389 (15)0.0413 (16)0.0409 (16)−0.0144 (13)−0.0095 (12)−0.0046 (12)
C170.070 (2)0.0355 (17)0.0500 (19)−0.0156 (16)−0.0150 (17)−0.0070 (14)
C180.057 (2)0.0422 (19)0.0456 (18)0.0061 (16)−0.0153 (16)−0.0076 (14)
C190.0344 (16)0.065 (2)0.0468 (18)−0.0018 (15)−0.0127 (14)−0.0062 (16)
C200.0356 (15)0.0489 (18)0.0384 (15)−0.0164 (13)−0.0087 (12)−0.0002 (13)
C210.0342 (14)0.0269 (13)0.0326 (13)−0.0080 (11)−0.0036 (11)0.0095 (10)
C220.060 (2)0.061 (2)0.066 (2)−0.0357 (19)−0.0326 (19)0.0340 (19)
C230.078 (3)0.085 (3)0.071 (3)−0.041 (3)−0.044 (2)0.044 (2)
C240.073 (3)0.051 (2)0.054 (2)−0.0160 (19)−0.0136 (19)0.0303 (17)
C250.087 (3)0.051 (2)0.068 (2)−0.042 (2)−0.021 (2)0.0278 (19)
C260.067 (2)0.0484 (19)0.0520 (19)−0.0341 (18)−0.0217 (17)0.0159 (15)
O10.0479 (13)0.0506 (14)0.0404 (12)−0.0115 (11)−0.0050 (10)0.0059 (10)

Geometric parameters (Å, °)

Cu1—Br12.3387 (5)C15—C201.380 (5)
Cu1—S12.2263 (8)C16—C171.385 (5)
Cu1—S22.2129 (8)C17—C181.387 (7)
S1—C11.709 (3)C18—C191.354 (5)
S2—C141.705 (2)C19—C201.394 (5)
O1—H1O0.8300C21—C221.367 (5)
O1—H2O0.8000C21—C261.381 (5)
N1—C11.336 (4)C22—C231.387 (6)
N1—C21.424 (3)C23—C241.368 (7)
N2—C11.343 (3)C24—C251.367 (7)
N2—C81.418 (3)C25—C261.382 (6)
N3—C151.428 (4)C3—H30.9300
N3—C141.332 (3)C4—H40.9300
N4—C141.340 (3)C5—H50.9300
N4—C211.435 (3)C6—H60.9300
N1—H1N0.8600C7—H70.9300
N2—H2N0.8600C9—H90.9300
N3—H3N0.8600C10—H100.9300
N4—H4N0.8600C11—H110.9300
C2—C31.377 (5)C12—H120.9300
C2—C71.384 (5)C13—H130.9300
C3—C41.385 (5)C16—H160.9300
C4—C51.371 (6)C17—H170.9300
C5—C61.379 (7)C18—H180.9300
C6—C71.377 (5)C19—H190.9300
C8—C131.387 (4)C20—H200.9300
C8—C91.386 (4)C22—H220.9300
C9—C101.387 (5)C23—H230.9300
C10—C111.372 (5)C24—H240.9300
C11—C121.377 (5)C25—H250.9300
C12—C131.380 (5)C26—H260.9300
C15—C161.383 (5)
Br1—Cu1—S1125.03 (3)C22—C21—C26120.7 (3)
Br1—Cu1—S2126.04 (3)N4—C21—C26119.9 (3)
S1—Cu1—S2108.93 (3)N4—C21—C22119.4 (3)
Cu1—S1—C1110.49 (9)C21—C22—C23119.5 (4)
Cu1—S2—C14111.94 (9)C22—C23—C24120.3 (4)
H1O—O1—H2O96.00C23—C24—C25119.7 (4)
C1—N1—C2126.0 (2)C24—C25—C26120.9 (4)
C1—N2—C8129.7 (2)C21—C26—C25118.9 (4)
C14—N3—C15124.0 (2)C2—C3—H3120.00
C14—N4—C21124.7 (2)C4—C3—H3120.00
C1—N1—H1N117.00C5—C4—H4120.00
C2—N1—H1N117.00C3—C4—H4120.00
C8—N2—H2N115.00C4—C5—H5120.00
C1—N2—H2N115.00C6—C5—H5120.00
C14—N3—H3N118.00C7—C6—H6120.00
C15—N3—H3N118.00C5—C6—H6120.00
C21—N4—H4N118.00C2—C7—H7120.00
C14—N4—H4N118.00C6—C7—H7120.00
S1—C1—N2119.5 (2)C10—C9—H9120.00
N1—C1—N2118.9 (2)C8—C9—H9120.00
S1—C1—N1121.50 (19)C11—C10—H10120.00
C3—C2—C7120.4 (3)C9—C10—H10120.00
N1—C2—C3119.0 (3)C10—C11—H11120.00
N1—C2—C7120.6 (3)C12—C11—H11120.00
C2—C3—C4119.4 (4)C11—C12—H12120.00
C3—C4—C5120.6 (4)C13—C12—H12120.00
C4—C5—C6119.5 (4)C12—C13—H13120.00
C5—C6—C7120.8 (4)C8—C13—H13120.00
C2—C7—C6119.3 (4)C15—C16—H16120.00
N2—C8—C9117.3 (2)C17—C16—H16120.00
C9—C8—C13119.9 (3)C18—C17—H17120.00
N2—C8—C13122.7 (2)C16—C17—H17120.00
C8—C9—C10119.3 (3)C17—C18—H18120.00
C9—C10—C11120.7 (3)C19—C18—H18120.00
C10—C11—C12119.8 (3)C20—C19—H19120.00
C11—C12—C13120.4 (3)C18—C19—H19120.00
C8—C13—C12119.8 (3)C15—C20—H20120.00
S2—C14—N3120.56 (19)C19—C20—H20120.00
S2—C14—N4120.7 (2)C23—C22—H22120.00
N3—C14—N4118.8 (2)C21—C22—H22120.00
N3—C15—C16120.2 (3)C22—C23—H23120.00
C16—C15—C20120.3 (3)C24—C23—H23120.00
N3—C15—C20119.5 (3)C25—C24—H24120.00
C15—C16—C17119.7 (4)C23—C24—H24120.00
C16—C17—C18119.6 (4)C24—C25—H25120.00
C17—C18—C19120.6 (3)C26—C25—H25120.00
C18—C19—C20120.5 (4)C21—C26—H26121.00
C15—C20—C19119.3 (3)C25—C26—H26121.00
Br1—Cu1—S1—C1−7.29 (13)C2—C3—C4—C5−0.5 (6)
S2—Cu1—S1—C1172.19 (12)C3—C4—C5—C62.0 (7)
Br1—Cu1—S2—C14−17.05 (13)C4—C5—C6—C7−1.1 (7)
S1—Cu1—S2—C14163.48 (12)C5—C6—C7—C2−1.4 (6)
Cu1—S1—C1—N1166.2 (2)N2—C8—C9—C10−177.1 (4)
Cu1—S1—C1—N2−11.3 (3)C13—C8—C9—C10−1.0 (6)
Cu1—S2—C14—N3176.2 (2)N2—C8—C13—C12177.9 (3)
Cu1—S2—C14—N4−4.0 (3)C9—C8—C13—C122.0 (6)
C2—N1—C1—S17.0 (4)C8—C9—C10—C11−0.4 (7)
C2—N1—C1—N2−175.5 (3)C9—C10—C11—C120.7 (7)
C1—N1—C2—C3−130.1 (3)C10—C11—C12—C130.3 (7)
C1—N1—C2—C753.2 (4)C11—C12—C13—C8−1.6 (6)
C8—N2—C1—S1−169.9 (3)N3—C15—C16—C17−178.2 (3)
C8—N2—C1—N112.6 (5)C20—C15—C16—C172.2 (5)
C1—N2—C8—C9−150.7 (4)N3—C15—C20—C19179.5 (3)
C1—N2—C8—C1333.2 (5)C16—C15—C20—C19−0.9 (5)
C15—N3—C14—S2−1.0 (4)C15—C16—C17—C18−2.1 (5)
C15—N3—C14—N4179.1 (3)C16—C17—C18—C190.6 (6)
C14—N3—C15—C1666.0 (4)C17—C18—C19—C200.8 (6)
C14—N3—C15—C20−114.4 (4)C18—C19—C20—C15−0.7 (5)
C21—N4—C14—S2−172.0 (2)N4—C21—C22—C23179.8 (3)
C21—N4—C14—N37.9 (5)C26—C21—C22—C23−1.0 (5)
C14—N4—C21—C2284.2 (4)N4—C21—C26—C25−178.9 (3)
C14—N4—C21—C26−95.1 (4)C22—C21—C26—C251.8 (5)
N1—C2—C3—C4−178.8 (3)C21—C22—C23—C24−1.2 (6)
C7—C2—C3—C4−2.0 (5)C22—C23—C24—C252.5 (7)
N1—C2—C7—C6179.6 (3)C23—C24—C25—C26−1.6 (7)
C3—C2—C7—C63.0 (5)C24—C25—C26—C21−0.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.353.046 (4)139
O1—H1O···S1ii0.832.663.462 (3)163
N2—H2N···Br10.862.593.435 (2)169
N3—H3N···O1iii0.862.162.957 (3)155
N4—H4N···Br10.862.723.573 (2)170
C13—H13···N10.932.583.000 (4)108
C13—H13···S2iv0.932.863.523 (3)129
O1—H2O···CgDiii0.802.783.306 (3)125

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5021).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.
  • Mufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2384.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography