PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1779.
Published online 2009 July 4. doi:  10.1107/S1600536809025343
PMCID: PMC2977282

N-(4-tert-Butyl­benz­yl)phthalimide

Abstract

The mol­ecule of the title compound [systematic name: 2-(4-tert-butyl­benz­yl)isoindoline-1,3-dione], C19H19NO2, is V-shaped with a dihedral angle of 74.15 (7)° between the mean planes of the phthalimide unit and the benzene ring. The methyl groups of the tert-butyl substituent are disordered over two sets of positions, with an occupancy ratio of 0.700 (4):0.300 (4). In the crystal, inter­molecular C—H(...)O hydrogen bonds link adjacent mol­ecules into centrosymmetric dimers. An additional weak C—H(...)O contact, together with weak C—H(...)π and π–π inter­actions [centroid–centroid distance = 3.961 (2) Å] generate a three-dimensional network.

Related literature

For the synthesis, see: Xin et al. (2006 [triangle]). For related structures, see: Chen et al. (2006 [triangle]); Lü et al. (2006 [triangle]); Warzecha et al. (2006a [triangle],b [triangle],c [triangle]); Xin et al. (2006 [triangle]).For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1779-scheme1.jpg

Experimental

Crystal data

  • C19H19NO2
  • M r = 293.35
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o1779-efi1.jpg
  • a = 37.576 (7) Å
  • c = 6.2970 (16) Å
  • V = 7700 (3) Å3
  • Z = 18
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 294 K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.983, T max = 0.987
  • 13205 measured reflections
  • 3022 independent reflections
  • 1574 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.139
  • S = 1.01
  • 3022 reflections
  • 232 parameters
  • 117 restraints
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks gloabl, I. DOI: 10.1107/S1600536809025343/hb5020sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025343/hb5020Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Changsha University of Science and Technology Talent Fund (Project No. 1004214)

supplementary crystallographic information

Comment

The molecular structure of (I) (Fig. 1) shows that the phthalimide ring system is almost planar, with the dihedral angle between the C2···C7 and N1/C1/C2/C7/C8 rings 1.26 (15) °. The molecule adopts a V-shape with a dihedral angle between the mean planes of the phthalimide group and the benzene ring of 74.12 (7) Å. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those observed in comparable structures (Chen et al., 2006; Lü et al., 2006; Warzecha et al., 2006a,b,c; Xin et al., 2006).

In the crystal structure, complementary intermolecular C6—H6a···O2 hydrogen bonds link molecules into dimers (Table 1, Fig. 2). Additional weak C8—H9B···O1 and C—H···π contacts together with π-π interactions between the six-membered phthalimide rings (centroid-centroid separation 3.961 (2) Å; 1/3 - x,2/3 - y,2/3 - z) generate an extensive three-dimensional network structure, Fig. 3.

Experimental

The title compound was obtained by a literature method (Xin, et al., 2006). Colourless blocks of (I) were grown from an ethanol solution.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C). The three methyl groups of the tert-butyl group are disordered over two positions with an occupancy ratio of 0.700 (4):0.300 (4). Restraints were applied to the atomic displacement parameters and interatomic distances for these atoms. PLATON (Spek, 2009) reports a solvent accessible voids of total area 164.0 Å3 in the structure. However, the low residual electron density does not suggest additional solvent in the structure. This was confirmed using the SQUEEZE procedure (Spek, 2009).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radius. Only the major disorder component of the disordered methyl groups is shown.
Fig. 2.
Centrosymmetric dimers of (I) formed by C—H···O hydrogen bonds drawn as dashed lines.
Fig. 3.
Crystal packing of (I) viewed down the c axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C19H19NO2Dx = 1.139 Mg m3
Mr = 293.35Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2125 reflections
Hall symbol: -R 3θ = 2.9–20.3°
a = 37.576 (7) ŵ = 0.07 mm1
c = 6.2970 (16) ÅT = 294 K
V = 7700 (3) Å3Block, colourless
Z = 180.24 × 0.22 × 0.18 mm
F(000) = 2808

Data collection

Bruker SMART 1K CCD area-detector diffractometer3022 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
graphiteRint = 0.060
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −44→44
Tmin = 0.983, Tmax = 0.987k = −44→40
13205 measured reflectionsl = −7→5

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139w = 1/[σ2(Fo2) + (0.067P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.007
3022 reflectionsΔρmax = 0.20 e Å3
232 parametersΔρmin = −0.17 e Å3
117 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.74578 (6)0.07689 (6)0.8339 (3)0.0624 (6)
O10.71269 (6)0.06224 (6)0.5108 (3)0.0914 (7)
O20.78710 (6)0.11049 (6)1.1186 (3)0.0878 (6)
C10.73592 (7)0.08689 (8)0.6388 (4)0.0636 (7)
C20.75936 (7)0.13258 (7)0.6282 (4)0.0592 (6)
C30.76152 (8)0.15895 (9)0.4692 (4)0.0738 (8)
H3A0.74630.14930.34480.089*
C40.78736 (9)0.20036 (10)0.5043 (5)0.0857 (9)
H4A0.78970.21900.40030.103*
C50.80973 (9)0.21491 (9)0.6882 (5)0.0840 (9)
H5A0.82670.24310.70610.101*
C60.80741 (8)0.18844 (9)0.8472 (4)0.0742 (8)
H6A0.82250.19810.97200.089*
C70.78172 (7)0.14702 (8)0.8123 (4)0.0586 (6)
C80.77353 (8)0.11164 (8)0.9466 (4)0.0637 (7)
C90.73037 (8)0.03495 (8)0.9110 (4)0.0761 (8)
H9A0.70410.01670.84460.091*
H9B0.72610.03411.06320.091*
C100.76013 (7)0.02033 (7)0.8621 (4)0.0633 (7)
C110.76087 (8)0.00447 (8)0.6666 (5)0.0779 (8)
H11A0.74180.00170.56400.093*
C120.78922 (8)−0.00735 (8)0.6194 (4)0.0769 (8)
H12A0.7887−0.01810.48570.092*
C130.81833 (8)−0.00375 (7)0.7641 (4)0.0648 (7)
C140.81715 (9)0.01207 (8)0.9605 (4)0.0775 (8)
H14A0.83630.01511.06300.093*
C150.78852 (9)0.02358 (8)1.0095 (4)0.0755 (8)
H15A0.78850.03371.14430.091*
C160.84998 (8)−0.01645 (8)0.7120 (4)0.0776 (8)
C170.85716 (17)−0.01769 (19)0.4734 (6)0.1105 (16)0.700 (4)
H17A0.8317−0.03660.40560.166*0.700 (4)
H17B0.8769−0.02650.45080.166*0.700 (4)
H17C0.86740.00920.41410.166*0.700 (4)
C180.83567 (17)−0.05907 (15)0.8010 (9)0.1127 (16)0.700 (4)
H18A0.8094−0.07820.74100.169*0.700 (4)
H18B0.8332−0.05860.95260.169*0.700 (4)
H18C0.8553−0.06740.76570.169*0.700 (4)
C190.89213 (15)0.01404 (19)0.8087 (9)0.1309 (19)0.700 (4)
H19A0.89080.01120.96050.196*0.700 (4)
H19B0.89920.04160.77150.196*0.700 (4)
H19C0.91260.00830.75440.196*0.700 (4)
C17'0.8277 (4)−0.0580 (3)0.595 (2)0.125 (3)0.300 (4)
H17D0.8080−0.07860.68910.188*0.300 (4)
H17E0.8474−0.06570.55110.188*0.300 (4)
H17F0.8138−0.05560.47310.188*0.300 (4)
C18'0.8704 (4)−0.0220 (4)0.9090 (15)0.106 (3)0.300 (4)
H18D0.8506−0.04560.98710.160*0.300 (4)
H18E0.88060.00200.99700.160*0.300 (4)
H18F0.8927−0.02600.86670.160*0.300 (4)
C19'0.8826 (3)0.0180 (3)0.578 (2)0.115 (3)0.300 (4)
H19D0.86980.02350.46040.172*0.300 (4)
H19E0.90150.01000.52490.172*0.300 (4)
H19F0.89720.04230.66280.172*0.300 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0547 (13)0.0568 (13)0.0710 (14)0.0243 (11)−0.0037 (10)0.0023 (11)
O10.0771 (13)0.0802 (13)0.0980 (15)0.0252 (11)−0.0323 (11)−0.0139 (11)
O20.0980 (15)0.0980 (14)0.0664 (13)0.0482 (12)−0.0134 (11)−0.0046 (10)
C10.0501 (15)0.0666 (18)0.0722 (18)0.0279 (14)−0.0057 (13)−0.0020 (14)
C20.0509 (15)0.0649 (17)0.0670 (17)0.0330 (13)0.0004 (13)−0.0011 (14)
C30.0691 (18)0.082 (2)0.0766 (19)0.0431 (17)−0.0010 (14)0.0084 (16)
C40.078 (2)0.080 (2)0.105 (2)0.0436 (18)0.0076 (18)0.0199 (17)
C50.072 (2)0.0623 (18)0.116 (3)0.0321 (16)0.0029 (18)0.0002 (19)
C60.0673 (18)0.0686 (19)0.088 (2)0.0349 (15)−0.0063 (14)−0.0103 (16)
C70.0508 (15)0.0620 (17)0.0668 (17)0.0310 (13)0.0014 (12)−0.0037 (13)
C80.0624 (16)0.0716 (18)0.0616 (17)0.0369 (15)−0.0027 (13)−0.0051 (15)
C90.0628 (17)0.0650 (17)0.092 (2)0.0255 (14)0.0088 (14)0.0128 (14)
C100.0587 (16)0.0505 (15)0.0716 (19)0.0204 (13)0.0006 (13)0.0080 (12)
C110.0663 (18)0.0742 (19)0.082 (2)0.0265 (15)−0.0184 (14)−0.0111 (15)
C120.077 (2)0.0720 (18)0.0724 (19)0.0298 (16)−0.0104 (15)−0.0166 (14)
C130.0677 (17)0.0519 (15)0.0676 (17)0.0244 (13)0.0006 (14)0.0029 (12)
C140.095 (2)0.087 (2)0.0638 (18)0.0552 (18)−0.0137 (14)0.0018 (14)
C150.099 (2)0.0821 (19)0.0583 (17)0.0551 (18)−0.0020 (15)0.0044 (13)
C160.0807 (18)0.0794 (17)0.0765 (17)0.0429 (15)0.0052 (13)0.0025 (14)
C170.120 (3)0.137 (3)0.092 (3)0.078 (3)0.021 (2)0.005 (2)
C180.131 (3)0.106 (3)0.130 (3)0.081 (3)0.026 (3)0.029 (3)
C190.096 (3)0.148 (4)0.144 (4)0.057 (3)0.003 (3)−0.036 (3)
C17'0.124 (5)0.123 (5)0.132 (5)0.065 (4)0.006 (4)−0.021 (4)
C18'0.112 (5)0.113 (5)0.113 (5)0.071 (4)0.004 (4)0.014 (4)
C19'0.098 (4)0.122 (5)0.118 (5)0.052 (4)0.021 (4)0.012 (4)

Geometric parameters (Å, °)

N1—C81.391 (3)C14—C151.380 (3)
N1—C11.388 (3)C14—H14A0.9300
N1—C91.464 (3)C15—H15A0.9300
O1—C11.209 (3)C16—C19'1.520 (7)
O2—C81.207 (3)C16—C181.519 (4)
C1—C21.488 (3)C16—C18'1.526 (7)
C2—C71.374 (3)C16—C171.531 (4)
C2—C31.382 (3)C16—C17'1.539 (7)
C3—C41.379 (4)C16—C191.542 (5)
C3—H3A0.9300C17—H17A0.9600
C4—C51.374 (4)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.383 (4)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.378 (3)C18—H18C0.9600
C6—H6A0.9300C19—H19A0.9600
C7—C81.473 (3)C19—H19B0.9600
C9—C101.504 (3)C19—H19C0.9600
C9—H9A0.9700C17'—H17D0.9600
C9—H9B0.9700C17'—H17E0.9600
C10—C151.373 (3)C17'—H17F0.9600
C10—C111.374 (3)C18'—H18D0.9600
C11—C121.376 (4)C18'—H18E0.9600
C11—H11A0.9300C18'—H18F0.9600
C12—C131.377 (3)C19'—H19D0.9600
C12—H12A0.9300C19'—H19E0.9600
C13—C141.383 (3)C19'—H19F0.9600
C13—C161.522 (4)
C8—N1—C1111.9 (2)C18—C16—C18'59.5 (5)
C8—N1—C9123.3 (2)C19'—C16—C13106.1 (5)
C1—N1—C9124.7 (2)C18—C16—C13109.3 (3)
O1—C1—N1124.8 (2)C18'—C16—C13113.1 (5)
O1—C1—C2129.7 (2)C19'—C16—C1753.2 (5)
N1—C1—C2105.5 (2)C18—C16—C17107.8 (3)
C7—C2—C3121.5 (2)C18'—C16—C17133.2 (5)
C7—C2—C1108.1 (2)C13—C16—C17113.5 (3)
C3—C2—C1130.4 (2)C19'—C16—C17'113.4 (7)
C4—C3—C2116.7 (3)C18—C16—C17'51.7 (5)
C4—C3—H3A121.7C18'—C16—C17'107.7 (7)
C2—C3—H3A121.7C13—C16—C17'107.9 (5)
C5—C4—C3122.0 (3)C17—C16—C17'61.0 (5)
C5—C4—H4A119.0C19'—C16—C1959.7 (5)
C3—C4—H4A119.0C18—C16—C19109.2 (4)
C4—C5—C6121.2 (3)C18'—C16—C1951.8 (5)
C4—C5—H5A119.4C13—C16—C19110.8 (3)
C6—C5—H5A119.4C17—C16—C19106.2 (3)
C7—C6—C5116.9 (3)C17'—C16—C19141.1 (5)
C7—C6—H6A121.5C16—C17—H17A109.5
C5—C6—H6A121.5C16—C17—H17B109.5
C2—C7—C6121.7 (2)H17A—C17—H17B109.5
C2—C7—C8108.5 (2)C16—C17—H17C109.5
C6—C7—C8129.8 (2)H17A—C17—H17C109.5
O2—C8—N1123.8 (2)H17B—C17—H17C109.5
O2—C8—C7130.3 (2)C16—C18—H18A109.5
N1—C8—C7106.0 (2)C16—C18—H18B109.5
N1—C9—C10111.05 (19)H18A—C18—H18B109.5
N1—C9—H9A109.4C16—C18—H18C109.5
C10—C9—H9A109.4H18A—C18—H18C109.5
N1—C9—H9B109.4H18B—C18—H18C109.5
C10—C9—H9B109.4C16—C19—H19A109.5
H9A—C9—H9B108.0C16—C19—H19B109.5
C15—C10—C11117.5 (3)C16—C19—H19C109.5
C15—C10—C9121.1 (3)C16—C17'—H17D109.5
C11—C10—C9121.5 (2)C16—C17'—H17E109.5
C10—C11—C12121.3 (2)H17D—C17'—H17E109.5
C10—C11—H11A119.3C16—C17'—H17F109.5
C12—C11—H11A119.3H17D—C17'—H17F109.5
C11—C12—C13122.0 (3)H17E—C17'—H17F109.5
C11—C12—H12A119.0C16—C18'—H18D109.5
C13—C12—H12A119.0C16—C18'—H18E109.5
C12—C13—C14116.0 (3)H18D—C18'—H18E109.5
C12—C13—C16122.2 (2)C16—C18'—H18F109.5
C14—C13—C16121.7 (2)H18D—C18'—H18F109.5
C15—C14—C13122.2 (2)H18E—C18'—H18F109.5
C15—C14—H14A118.9C16—C19'—H19D109.5
C13—C14—H14A118.9C16—C19'—H19E109.5
C10—C15—C14120.9 (2)H19D—C19'—H19E109.5
C10—C15—H15A119.5C16—C19'—H19F109.5
C14—C15—H15A119.5H19D—C19'—H19F109.5
C19'—C16—C18144.5 (5)H19E—C19'—H19F109.5
C19'—C16—C18'108.8 (7)
C8—N1—C1—O1179.5 (2)C8—N1—C9—C10−83.0 (3)
C9—N1—C1—O11.8 (4)C1—N1—C9—C1094.5 (3)
C8—N1—C1—C2−0.8 (3)N1—C9—C10—C1595.2 (3)
C9—N1—C1—C2−178.57 (19)N1—C9—C10—C11−82.7 (3)
O1—C1—C2—C7−179.8 (3)C15—C10—C11—C12−0.6 (4)
N1—C1—C2—C70.5 (2)C9—C10—C11—C12177.4 (2)
O1—C1—C2—C3−1.3 (4)C10—C11—C12—C13−0.4 (4)
N1—C1—C2—C3179.1 (2)C11—C12—C13—C140.6 (4)
C7—C2—C3—C40.4 (4)C11—C12—C13—C16−179.5 (2)
C1—C2—C3—C4−178.0 (2)C12—C13—C14—C150.1 (4)
C2—C3—C4—C5−0.4 (4)C16—C13—C14—C15−179.8 (2)
C3—C4—C5—C60.2 (4)C11—C10—C15—C141.3 (4)
C4—C5—C6—C70.0 (4)C9—C10—C15—C14−176.7 (2)
C3—C2—C7—C6−0.1 (4)C13—C14—C15—C10−1.1 (4)
C1—C2—C7—C6178.5 (2)C12—C13—C16—C19'78.0 (6)
C3—C2—C7—C8−178.8 (2)C14—C13—C16—C19'−102.1 (6)
C1—C2—C7—C8−0.1 (2)C12—C13—C16—C18−98.6 (4)
C5—C6—C7—C20.0 (4)C14—C13—C16—C1881.3 (4)
C5—C6—C7—C8178.3 (2)C12—C13—C16—C18'−162.8 (6)
C1—N1—C8—O2−178.6 (2)C14—C13—C16—C18'17.1 (7)
C9—N1—C8—O2−0.8 (4)C12—C13—C16—C1721.7 (4)
C1—N1—C8—C70.8 (3)C14—C13—C16—C17−158.4 (3)
C9—N1—C8—C7178.6 (2)C12—C13—C16—C17'−43.8 (7)
C2—C7—C8—O2179.0 (3)C14—C13—C16—C17'136.1 (6)
C6—C7—C8—O20.5 (4)C12—C13—C16—C19141.1 (4)
C2—C7—C8—N1−0.4 (2)C14—C13—C16—C19−39.0 (4)
C6—C7—C8—N1−178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.413.297 (3)160
C9—H9B···O1ii0.972.713.135 (3)107
C5—H5A···Cg3iii0.932.943.771 (4)149

Symmetry codes: (i) −x+5/3, −y+1/3, −z+7/3; (ii) −x+y+4/3, −x+2/3, z+2/3; (iii) −x+1/3, −y+2/3, −z+2/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5020).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, o4188–o4189.
  • Lü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, o2965–o2966.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367–o2368.
  • Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o2367–o2368.
  • Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450–o5452.
  • Westrip, S. P. (2009). publCIF In preparation.
  • Xin, C.-W., Li, J.-S., Guo, Z.-X. & Chen, L.-G. (2006). Acta Cryst. E62, o1273–o1275.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography