PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1940.
Published online 2009 July 22. doi:  10.1107/S1600536809027883
PMCID: PMC2977279

2,4-Dichloro-N-(3,4-dichloro­phen­yl)benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C12H7Cl4NO2S, the conformation of the N—H bond is syn to the meta-chloro residue in the aniline benzene ring. The two aromatic rings are tilted relative to each other by 68.9 (1)°. N—H(...)O hydrogen bonds connect the mol­ecules into centrosymmetric dimers.

Related literature

For related structures, see: Gowda et al. (2008 [triangle], 2009a [triangle],b [triangle]). For comparative bond lengths in other aryl sulfonamides, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1940-scheme1.jpg

Experimental

Crystal data

  • C12H7Cl4NO2S
  • M r = 371.05
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1940-efi1.jpg
  • a = 8.1498 (9) Å
  • b = 8.2633 (9) Å
  • c = 11.887 (1) Å
  • α = 81.857 (9)°
  • β = 72.728 (9)°
  • γ = 78.213 (9)°
  • V = 745.49 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 299 K
  • 0.48 × 0.48 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.664, T max = 0.781
  • 7103 measured reflections
  • 2722 independent reflections
  • 2388 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.152
  • S = 1.27
  • 2722 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027883/bt5008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027883/bt5008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Gowda et al., 2009a; Gowda et al., 2009b), the structure of 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide has been determined. The conformations of the N—C bonds in the C—SO2—NH—C segment have trans and gauche torsion angles with the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -48.2 (2)°. The conformation of the N—H bond is syn to the meta-chloro group in the anilino benzene ring. The two aromatic rings are tilted relative to each other by 68.9 (1)°. The other bond parameters are similar to those observed in 2,4-dimethyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2009a); 4-methylN-(3,4-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009b); N-(3-chlorophenyl)benzenesulfonamide (Gowda et al., 2008) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of 1,3-dichlorobenzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 3,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The amino H atom was located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H7Cl4NO2SZ = 2
Mr = 371.05F(000) = 372
Triclinic, P1Dx = 1.653 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1498 (9) ÅCell parameters from 3818 reflections
b = 8.2633 (9) Åθ = 2.5–27.5°
c = 11.887 (1) ŵ = 0.93 mm1
α = 81.857 (9)°T = 299 K
β = 72.728 (9)°Plate, colourless
γ = 78.213 (9)°0.48 × 0.48 × 0.28 mm
V = 745.49 (13) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2722 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
graphiteRint = 0.022
Rotation method data acquisition using ω and [var phi] scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −9→9
Tmin = 0.664, Tmax = 0.781k = −9→9
7103 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.26w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max = 0.011
184 parametersΔρmax = 0.68 e Å3
1 restraintΔρmin = −0.48 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3911 (3)0.5584 (3)0.7834 (2)0.0400 (6)
C20.3221 (3)0.4144 (4)0.8289 (2)0.0464 (6)
H20.32480.33690.77850.056*
C30.2503 (3)0.3869 (4)0.9484 (3)0.0551 (7)
C40.2429 (4)0.5027 (4)1.0245 (2)0.0559 (7)
C50.3100 (4)0.6460 (4)0.9785 (3)0.0590 (7)
H50.30340.72511.02880.071*
C60.3868 (4)0.6734 (4)0.8589 (2)0.0509 (7)
H60.43550.76850.82910.061*
C70.2467 (3)0.8593 (3)0.61967 (19)0.0337 (5)
C80.1074 (3)0.7982 (3)0.6056 (2)0.0352 (5)
C9−0.0613 (3)0.8837 (3)0.6440 (2)0.0428 (6)
H9−0.15430.84390.63380.051*
C10−0.0895 (3)1.0267 (3)0.6968 (2)0.0447 (6)
C110.0473 (3)1.0924 (4)0.7108 (3)0.0513 (7)
H110.02621.19110.74580.062*
C120.2136 (3)1.0071 (3)0.6715 (2)0.0448 (6)
H120.30631.04930.67980.054*
N10.4667 (3)0.5772 (3)0.65959 (18)0.0410 (5)
H1N0.478 (4)0.500 (3)0.618 (2)0.049*
O10.5157 (2)0.7111 (2)0.46042 (14)0.0419 (4)
O20.5641 (2)0.8522 (2)0.61286 (16)0.0485 (5)
Cl10.16795 (16)0.20525 (13)1.00219 (9)0.0922 (4)
Cl20.15005 (13)0.47338 (13)1.17468 (7)0.0813 (3)
Cl30.13671 (8)0.61471 (9)0.54309 (6)0.0544 (3)
Cl4−0.30088 (9)1.12858 (12)0.75011 (8)0.0705 (3)
S10.46469 (7)0.75391 (7)0.57981 (5)0.0351 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0316 (12)0.0451 (14)0.0404 (12)0.0022 (10)−0.0130 (9)−0.0006 (10)
C20.0439 (14)0.0462 (15)0.0468 (14)−0.0028 (12)−0.0137 (11)−0.0012 (12)
C30.0428 (15)0.0574 (18)0.0573 (16)−0.0035 (13)−0.0135 (12)0.0126 (14)
C40.0497 (16)0.063 (2)0.0445 (14)0.0031 (14)−0.0093 (12)0.0021 (13)
C50.0676 (19)0.0600 (19)0.0475 (16)−0.0058 (15)−0.0149 (14)−0.0083 (14)
C60.0569 (16)0.0503 (17)0.0459 (14)−0.0101 (13)−0.0143 (12)−0.0040 (12)
C70.0279 (11)0.0346 (12)0.0387 (11)−0.0069 (9)−0.0102 (9)0.0007 (9)
C80.0336 (12)0.0363 (13)0.0376 (11)−0.0085 (10)−0.0121 (9)−0.0012 (9)
C90.0296 (12)0.0553 (17)0.0459 (13)−0.0081 (11)−0.0133 (10)−0.0050 (12)
C100.0344 (12)0.0496 (15)0.0466 (13)0.0040 (11)−0.0136 (10)−0.0041 (11)
C110.0471 (15)0.0437 (15)0.0649 (17)0.0001 (12)−0.0191 (13)−0.0141 (13)
C120.0394 (14)0.0414 (14)0.0582 (15)−0.0095 (11)−0.0165 (11)−0.0089 (12)
N10.0415 (11)0.0400 (12)0.0400 (11)−0.0023 (9)−0.0121 (9)−0.0036 (9)
O10.0400 (9)0.0414 (10)0.0410 (9)−0.0075 (7)−0.0059 (7)−0.0036 (7)
O20.0312 (9)0.0583 (12)0.0615 (11)−0.0144 (8)−0.0142 (8)−0.0106 (9)
Cl10.1158 (8)0.0755 (7)0.0797 (7)−0.0406 (6)−0.0147 (6)0.0204 (5)
Cl20.0879 (6)0.0890 (7)0.0450 (4)−0.0018 (5)0.0006 (4)0.0053 (4)
Cl30.0432 (4)0.0551 (5)0.0720 (5)−0.0139 (3)−0.0140 (3)−0.0250 (4)
Cl40.0396 (4)0.0852 (6)0.0818 (6)0.0187 (4)−0.0207 (4)−0.0253 (5)
S10.0265 (3)0.0384 (4)0.0406 (4)−0.0070 (3)−0.0087 (2)−0.0033 (3)

Geometric parameters (Å, °)

C1—C61.386 (4)C7—S11.768 (2)
C1—C21.391 (4)C8—C91.385 (3)
C1—N11.416 (3)C8—Cl31.724 (2)
C2—C31.372 (4)C9—C101.363 (4)
C2—H20.9300C9—H90.9300
C3—C41.388 (4)C10—C111.396 (4)
C3—Cl11.731 (3)C10—Cl41.729 (3)
C4—C51.380 (4)C11—C121.371 (4)
C4—Cl21.723 (3)C11—H110.9300
C5—C61.380 (4)C12—H120.9300
C5—H50.9300N1—S11.625 (2)
C6—H60.9300N1—H1N0.833 (17)
C7—C121.387 (3)O1—S11.4297 (17)
C7—C81.394 (3)O2—S11.4208 (16)
C6—C1—C2119.9 (2)C7—C8—Cl3121.98 (19)
C6—C1—N1123.2 (2)C10—C9—C8119.3 (2)
C2—C1—N1116.9 (2)C10—C9—H9120.3
C3—C2—C1119.9 (3)C8—C9—H9120.3
C3—C2—H2120.1C9—C10—C11121.9 (2)
C1—C2—H2120.1C9—C10—Cl4119.22 (19)
C2—C3—C4120.7 (3)C11—C10—Cl4118.8 (2)
C2—C3—Cl1118.6 (2)C12—C11—C10118.0 (3)
C4—C3—Cl1120.7 (2)C12—C11—H11121.0
C5—C4—C3119.2 (3)C10—C11—H11121.0
C5—C4—Cl2119.1 (2)C11—C12—C7121.5 (2)
C3—C4—Cl2121.8 (2)C11—C12—H12119.2
C6—C5—C4120.8 (3)C7—C12—H12119.2
C6—C5—H5119.6C1—N1—S1124.52 (17)
C4—C5—H5119.6C1—N1—H1N121 (2)
C5—C6—C1119.6 (3)S1—N1—H1N110 (2)
C5—C6—H6120.2O2—S1—O1118.63 (10)
C1—C6—H6120.2O2—S1—N1109.79 (11)
C12—C7—C8119.0 (2)O1—S1—N1104.74 (10)
C12—C7—S1117.67 (17)O2—S1—C7105.89 (11)
C8—C7—S1123.32 (18)O1—S1—C7111.08 (10)
C9—C8—C7120.2 (2)N1—S1—C7106.12 (11)
C9—C8—Cl3117.83 (17)
C6—C1—C2—C30.0 (4)C8—C9—C10—C111.7 (4)
N1—C1—C2—C3178.6 (2)C8—C9—C10—Cl4−177.29 (18)
C1—C2—C3—C41.1 (4)C9—C10—C11—C12−1.1 (4)
C1—C2—C3—Cl1−179.28 (19)Cl4—C10—C11—C12177.9 (2)
C2—C3—C4—C5−0.4 (4)C10—C11—C12—C7−0.3 (4)
Cl1—C3—C4—C5179.9 (2)C8—C7—C12—C111.1 (4)
C2—C3—C4—Cl2178.9 (2)S1—C7—C12—C11−176.5 (2)
Cl1—C3—C4—Cl2−0.8 (4)C6—C1—N1—S1−34.0 (3)
C3—C4—C5—C6−1.3 (5)C2—C1—N1—S1147.43 (19)
Cl2—C4—C5—C6179.4 (2)C1—N1—S1—O265.2 (2)
C4—C5—C6—C12.3 (5)C1—N1—S1—O1−166.37 (17)
C2—C1—C6—C5−1.7 (4)C1—N1—S1—C7−48.8 (2)
N1—C1—C6—C5179.8 (2)C12—C7—S1—O20.2 (2)
C12—C7—C8—C9−0.5 (4)C8—C7—S1—O2−177.34 (19)
S1—C7—C8—C9176.96 (18)C12—C7—S1—O1−129.9 (2)
C12—C7—C8—Cl3−179.53 (19)C8—C7—S1—O152.6 (2)
S1—C7—C8—Cl3−2.0 (3)C12—C7—S1—N1116.8 (2)
C7—C8—C9—C10−0.8 (4)C8—C7—S1—N1−60.7 (2)
Cl3—C8—C9—C10178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.08 (2)2.903 (3)170 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5008).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o877. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography