PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m873.
Published online 2009 July 4. doi:  10.1107/S1600536809025392
PMCID: PMC2977275

catena-Poly[zinc(II)-μ-aqua-κ2 O:O-bis­(μ-quinoline-4-carboxyl­ato-κ2 O:O′)]

Abstract

The asymmetric unit of the title complex, [Zn(C10H6NO2)2(H2O)]n, consists of one quinoline-4-carboxyl­ate anion, half of a Zn2+ cation and half of a coordinated water mol­ecule. The cation and the water O atom have crystallographically imposed inversion and twofold rotation symmetry, respectively. The metal centre displays an elongated ZnO6 octa­hedral coordination geometry provided by the O atoms of four anions at the equatorial plane and two axial water mol­ecules. Each anion and water mol­ecule act as bridges between ZnII cations, forming a polymeric chain parallel to [001]. The chains are further linked into a three-dimensional framework through O—H(...)N hydrogen bonds.

Related literature

For the coordination chemistry of transition metal complexes with quinoline-4-carboxyl­ate, see: Bu et al. (2004 [triangle], 2005 [triangle]); Xiong et al. (2000 [triangle]); Chen et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m873-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H6NO2)2(H2O)]
  • M r = 427.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m873-efi1.jpg
  • a = 14.929 (2) Å
  • b = 14.4025 (13) Å
  • c = 7.5428 (11) Å
  • β = 91.961 (6)°
  • V = 1620.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.56 mm−1
  • T = 293 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.635, T max = 0.732
  • 5552 measured reflections
  • 1831 independent reflections
  • 1741 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.09
  • 1831 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025392/rz2342sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025392/rz2342Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the start-up fund of Southeast University.

supplementary crystallographic information

Comment

In recent years, new coordination compounds based on transition metals and quinoline-4-carboxylic acid have attracted much attention because of the role of non-covalent supramolecular interactions such as hydrogen bonding or π-π conjugate effect (Bu et al. 2005). However, the use of quinoline-4-carboxylic acid for the construction of metal-organic frameworks has not been well documented yet (Bu et al., 2004; Xiong et al., 2000; Chen et al., 2002).

The asymmetric unit of the title complex polymer (Fig. 1) consists of one quinoline-4-carboxylate anion, half of a zinc(II) cation and half of a coordinated water molecule. The cation and the water oxygen atom have crystallographically imposed inversion and twofold rotation symmetry, respectively. The geometry around the zinc(II) metal centre can be best described as elongated octahedral, with four oxygen atoms from four independent quinoline-4-carboxylate anions at the equatorial plane and two oxygen atoms from two H2O molecules at the axial position. Each quinoline-4-carboxylate anion adopts an O,O'-bidentate bridging mode. Adjacent zinc(II) cations are bridged by the quinoline-4-carboxylate ligands and water molecules, forming a chain parallel to [001] (Fig. 2). The chains are further linked into a three-dimensional network (Fig. 3) by O—H···N hydrogen bonds (Table 1).

Experimental

The title compound was synthesized by the solvothermal reaction of Zn(NO3)2.6H2O (0.2 mmol, 0.0595 g), 4-quinolinecarboxylic acid (0.6 mmol, 0.1039 g) and C2H5OH/H2O (4:1 v/v; 5 ml) in a Teflon-lined autoclave at 180°C for 3 days. After the reaction autoclave was slowly cooled to room temperature for 24 h, light yellow block single crystals suitable for X-ray diffraction analysis were obtained, isolated by filtration and washed with water.

Refinement

All H atoms were fixed geometrically and treated as riding, with C—H = 0.96 Å, O—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C, O).

Figures

Fig. 1.
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Partial crystal packing of the title compound, showing the polymeric chain parallel to [001]. Hydrogen atoms are omitted for clarity.
Fig. 3.
Crystal packing of the title compound viewed along the c axis. N—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

[Zn(C10H6NO2)2(H2O)]F(000) = 872
Mr = 427.72Dx = 1.753 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 30 reflections
a = 14.929 (2) Åθ = 3.3–27.5°
b = 14.4025 (13) ŵ = 1.56 mm1
c = 7.5428 (11) ÅT = 293 K
β = 91.961 (6)°Block, light yellow
V = 1620.8 (4) Å30.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer1831 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)h = −18→19
Tmin = 0.635, Tmax = 0.732k = −15→18
5552 measured reflectionsl = −7→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0375P)2 + 1.5104P] where P = (Fo2 + 2Fc2)/3
1831 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.50000.50000.01513 (10)
O10.40680 (9)0.40753 (9)0.38283 (15)0.0330 (3)
O20.39589 (8)0.42662 (9)0.08731 (15)0.0325 (3)
O30.50000.58494 (9)0.25000.0162 (3)
N10.14620 (8)0.20508 (9)0.23221 (16)0.0219 (3)
C10.22399 (11)0.18428 (10)0.3075 (2)0.0224 (3)
C20.29962 (10)0.24374 (10)0.3085 (2)0.0214 (3)
C30.29358 (10)0.32726 (10)0.22272 (18)0.0179 (3)
C40.19859 (11)0.43283 (11)0.0286 (2)0.0266 (3)
C50.11735 (13)0.45081 (12)−0.0528 (2)0.0342 (4)
C60.04541 (12)0.38852 (14)−0.0379 (2)0.0353 (4)
C70.05608 (11)0.30808 (13)0.0555 (2)0.0293 (3)
C80.13929 (10)0.28722 (10)0.14128 (19)0.0200 (3)
C90.21217 (9)0.35055 (10)0.13033 (18)0.0185 (3)
C100.37322 (9)0.39320 (10)0.23183 (19)0.0193 (3)
H10.22990.12550.36480.027*
H20.35430.22520.36970.026*
H30.24690.47540.01820.032*
H40.10920.5063−0.12170.041*
H5−0.01150.4034−0.09290.043*
H60.00730.26550.06190.035*
H70.54540.62640.25010.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01229 (15)0.01835 (14)0.01481 (15)0.00068 (7)0.00133 (9)−0.00354 (7)
O10.0360 (7)0.0416 (7)0.0210 (6)−0.0229 (5)−0.0037 (5)−0.0001 (5)
O20.0303 (6)0.0465 (7)0.0211 (5)−0.0222 (5)0.0049 (5)−0.0001 (5)
O30.0148 (6)0.0152 (6)0.0186 (7)0.0000.0000 (5)0.000
N10.0216 (6)0.0240 (6)0.0203 (6)−0.0082 (5)0.0032 (5)−0.0022 (5)
C10.0273 (8)0.0196 (6)0.0205 (7)−0.0041 (6)0.0028 (6)0.0014 (5)
C20.0194 (7)0.0261 (7)0.0186 (6)−0.0026 (5)0.0004 (5)−0.0005 (5)
C30.0182 (7)0.0212 (6)0.0144 (6)−0.0058 (5)0.0043 (5)−0.0042 (5)
C40.0309 (8)0.0220 (7)0.0273 (7)−0.0018 (6)0.0061 (6)0.0004 (6)
C50.0382 (10)0.0338 (8)0.0309 (9)0.0100 (7)0.0044 (7)0.0077 (7)
C60.0255 (8)0.0503 (10)0.0299 (9)0.0083 (7)−0.0008 (7)0.0037 (8)
C70.0192 (7)0.0421 (9)0.0268 (8)−0.0034 (6)0.0018 (6)−0.0010 (7)
C80.0185 (7)0.0250 (7)0.0167 (6)−0.0040 (5)0.0030 (5)−0.0026 (5)
C90.0196 (7)0.0199 (6)0.0162 (6)−0.0029 (5)0.0039 (5)−0.0037 (5)
C100.0171 (7)0.0217 (6)0.0193 (7)−0.0065 (5)0.0023 (5)−0.0032 (5)

Geometric parameters (Å, °)

Zn1—O2i2.0090 (11)C2—C31.367 (2)
Zn1—O2ii2.0090 (11)C2—H20.96
Zn1—O1iii2.0991 (11)C3—C91.420 (2)
Zn1—O12.0991 (11)C3—C101.5213 (19)
Zn1—O32.2478 (7)C4—C51.365 (3)
Zn1—O3iii2.2478 (7)C4—C91.422 (2)
O1—C101.2459 (18)C4—H30.95
O2—C101.2489 (18)C5—C61.407 (3)
O2—Zn1ii2.0090 (11)C5—H40.96
O3—Zn1ii2.2478 (7)C6—C71.362 (3)
O3—H70.90C6—H50.96
N1—C11.310 (2)C7—C81.413 (2)
N1—C81.3695 (19)C7—H60.95
C1—C21.417 (2)C8—C91.4244 (19)
C1—H10.95
O2i—Zn1—O2ii180.0C1—C2—H2119.9
O2i—Zn1—O1iii92.14 (6)C2—C3—C9118.77 (13)
O2ii—Zn1—O1iii87.86 (6)C2—C3—C10119.28 (13)
O2i—Zn1—O187.86 (6)C9—C3—C10121.94 (13)
O2ii—Zn1—O192.14 (6)C5—C4—C9120.58 (15)
O1iii—Zn1—O1180.0C5—C4—H3120.3
O2i—Zn1—O390.62 (4)C9—C4—H3119.1
O2ii—Zn1—O389.38 (4)C4—C5—C6120.78 (16)
O1iii—Zn1—O389.36 (4)C4—C5—H4119.8
O1—Zn1—O390.64 (4)C6—C5—H4119.4
O2i—Zn1—O3iii89.38 (4)C7—C6—C5120.50 (16)
O2ii—Zn1—O3iii90.62 (4)C7—C6—H5120.1
O1iii—Zn1—O3iii90.64 (4)C5—C6—H5119.4
O1—Zn1—O3iii89.36 (4)C6—C7—C8120.20 (15)
O3—Zn1—O3iii180.00 (6)C6—C7—H6119.8
C10—O1—Zn1136.90 (10)C8—C7—H6120.0
C10—O2—Zn1ii136.44 (10)N1—C8—C7117.58 (13)
Zn1ii—O3—Zn1114.05 (6)N1—C8—C9122.53 (13)
Zn1ii—O3—H7109.9C7—C8—C9119.90 (14)
Zn1—O3—H7112.4C3—C9—C4124.42 (13)
C1—N1—C8117.71 (12)C3—C9—C8117.57 (13)
N1—C1—C2123.96 (14)C4—C9—C8118.01 (14)
N1—C1—H1117.8O1—C10—O2128.43 (13)
C2—C1—H1118.2O1—C10—C3115.72 (13)
C3—C2—C1119.31 (14)O2—C10—C3115.84 (13)
C3—C2—H2120.8

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H7···N1iv0.901.892.7920 (15)174

Symmetry codes: (iv) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2342).

References

  • Bu, X.-H., Tong, M.-L., Chang, H.-C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed.43, 192–195. [PubMed]
  • Bu, X.-H., Tong, M.-L., Xie, Y.-B., Li, J.-R., Chang, H.-C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem.44, 9837–9846. [PubMed]
  • Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun.5, 35–37.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography