PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1982.
Published online 2009 July 25. doi:  10.1107/S1600536809027640
PMCID: PMC2977272

3,28-Diacet­oxy-29-bromo­betulin

Abstract

In the title mol­ecule, C34H53BrO4, all the cyclo­hexane rings adopt chair conformations, while the cyclo­pentane ring adopts an envelope conformation. In the crystal, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into corrugated sheets parallel to the ab plane.

Related literature

For the anti-HIV and anti­tumor activities of betulin derivatives, see: Sun et al. (1998 [triangle]) and Kim et al. (1998 [triangle]), respectively. For a related structure, see Mohamed et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1982-scheme1.jpg

Experimental

Crystal data

  • C34H53BrO4
  • M r = 605.67
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1982-efi1.jpg
  • a = 7.152 (3) Å
  • b = 14.946 (7) Å
  • c = 29.837 (12) Å
  • V = 3189 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.32 mm−1
  • T = 291 K
  • 0.40 × 0.38 × 0.37 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.622, T max = 0.642
  • 23319 measured reflections
  • 5578 independent reflections
  • 3534 reflections with I > 2σ(I)
  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.145
  • S = 0.94
  • 5578 reflections
  • 358 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.58 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2346 Friedel pairs
  • Flack parameter: 0.024 (12)

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027640/cv2584sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027640/cv2584Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the ‘948’ Project of State Forestry Administration (2006–4-119) and the Innovation Fund for Outstanding Young Teachers of Northeast Forestry University for supporting of this study.

supplementary crystallographic information

Comment

Betulin and its derivatives have been attracting extensive interests, owing to their anti-HIV and antitumor activites (Sun et al., 1998; Kim et al., 1998). The crystal structure of the diacetylation of betulin has been reported, considering the significance of its stereochemistry study. (Mohamed et al., 2006). We report here the synthesis and the crystal structure of the title compound (I) - a new betulin derivative.

In (I) (Fig. 1), the cyclopentane ring adopts a twisted envelope conformation and all cyclohexane rings adopt chair conformations. The bond distances and angles are all within the expected ranges and agree with those in the similar compound reported previously (Mohamed et al., 2006).

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into corrugated sheets parallel to ab plane.

Experimental

Purified betulin (4.4 g, 10 mmol) was dissolved in dichloromethane (100 ml) and pyridine (0.5 ml) mixed solvent, followed by the addition of acetic anhydride (5 ml, 5.3 mmol). The reaction mixture was stirred for 24 h at room temperature. The solvent was removed by distillation under vacuum. The crude product was washed with a small quantity of benzene and then recrystallized from benzene (30 ml), 3.1 g diacetate-betulin was obtained.

The 3, 28-diacetate-betulin (1.0 g, 2 mmol), N-bromosuccinimide (0.35 g, 2 mmol) and benzoyl peroxide (0.05 g, 0.22 mmol) were dissolved in tetrachloromethane (50 ml). The reaction mixture was stirred for 6 h at reflux temperature. The solvent was removed by distillation under vacuum. The crude product was washed with a small quantity of ethanol and then recrystallized from petroleum ether (6 ml), 0.4 g suitable for X-ray diffraction test colourless block crystals of the titel compound was obtained.

Refinement

C-bound H-atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.96-0.98 Å and Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
Fig. 2.
A portion of the crystal, showing the two-dimensional sheet of hydrogen-bonded (dashed lines) molecules. H atoms not involved in hydrogen bonds have been omitted.

Crystal data

C34H53BrO4F(000) = 1296
Mr = 605.67Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15343 reflections
a = 7.152 (3) Åθ = 3.1–27.4°
b = 14.946 (7) ŵ = 1.32 mm1
c = 29.837 (12) ÅT = 291 K
V = 3189 (2) Å3Block, colourless
Z = 40.40 × 0.38 × 0.37 mm

Data collection

Rigaku R-AXIS RAPID diffractometer5578 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
graphiteRint = 0.102
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.622, Tmax = 0.642k = −17→17
23319 measured reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.145w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
5578 reflectionsΔρmax = 0.45 e Å3
358 parametersΔρmin = −0.58 e Å3
18 restraintsAbsolute structure: Flack (1983), 2346 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.024 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.44746 (8)−0.01367 (6)0.18762 (2)0.1130 (4)
C11.0979 (5)0.4597 (3)0.38899 (13)0.0394 (10)
H1A1.22510.44680.37980.047*
H1B1.02390.46850.36210.047*
C21.0967 (5)0.5466 (3)0.41652 (14)0.0419 (10)
H2A1.17800.54010.44230.050*
H2B1.14370.59550.39840.050*
C30.9011 (6)0.5672 (3)0.43183 (13)0.0384 (10)
H30.82150.57440.40530.046*
C40.8156 (5)0.4940 (3)0.46193 (12)0.0366 (9)
C50.8272 (5)0.4054 (3)0.43421 (12)0.0311 (9)
H50.74950.41690.40780.037*
C60.7341 (6)0.3239 (3)0.45702 (14)0.0430 (11)
H6A0.81620.30060.48010.052*
H6B0.61820.34240.47120.052*
C70.6935 (5)0.2506 (3)0.42254 (13)0.0380 (10)
H7A0.60440.27330.40080.046*
H7B0.63600.20020.43770.046*
C80.8677 (5)0.2177 (3)0.39760 (12)0.0308 (9)
C90.9820 (4)0.3005 (3)0.37983 (11)0.0294 (8)
H90.90090.32760.35710.035*
C101.0203 (4)0.3785 (3)0.41474 (11)0.0281 (8)
C111.1536 (5)0.2692 (3)0.35383 (13)0.0379 (10)
H11A1.23950.24040.37440.045*
H11B1.21640.32110.34130.045*
C121.1069 (5)0.2039 (3)0.31566 (13)0.0367 (9)
H12A1.03730.23540.29260.044*
H12B1.22230.18250.30240.044*
C130.9924 (5)0.1240 (3)0.33177 (12)0.0310 (9)
H131.06810.09340.35440.037*
C140.8095 (5)0.1562 (3)0.35600 (12)0.0324 (9)
C150.6922 (6)0.0744 (3)0.37207 (14)0.0445 (11)
H15A0.75190.04920.39840.053*
H15B0.56950.09550.38100.053*
C160.6672 (6)−0.0005 (3)0.33708 (15)0.0503 (11)
H16A0.6061−0.05120.35110.060*
H16B0.58650.02080.31320.060*
C170.8514 (6)−0.0310 (3)0.31707 (13)0.0423 (10)
C180.9435 (5)0.0536 (3)0.29593 (12)0.0341 (9)
H180.84720.08100.27700.041*
C191.0936 (5)0.0189 (3)0.26382 (12)0.0395 (9)
H191.20800.00730.28090.047*
C201.1404 (6)0.0818 (3)0.22529 (15)0.0500 (12)
C211.0121 (7)−0.0725 (3)0.24745 (15)0.0582 (13)
H21A0.9779−0.06880.21600.070*
H21B1.1044−0.11950.25090.070*
C220.8384 (7)−0.0930 (3)0.27615 (16)0.0549 (12)
H22A0.7249−0.08110.25940.066*
H22B0.8381−0.15520.28540.066*
C230.6078 (6)0.5185 (3)0.46879 (16)0.0609 (14)
H23A0.55250.47790.48990.091*
H23B0.54310.51440.44070.091*
H23C0.59870.57850.48010.091*
C240.9094 (6)0.4905 (3)0.50812 (12)0.0520 (11)
H24A1.04280.48910.50450.078*
H24B0.86930.43770.52370.078*
H24C0.87490.54260.52510.078*
C251.1663 (5)0.3518 (3)0.45069 (14)0.0448 (11)
H25A1.26270.31630.43710.067*
H25B1.10630.31770.47390.067*
H25C1.22050.40480.46340.067*
C260.9830 (6)0.1609 (3)0.43158 (12)0.0464 (11)
H26A0.97800.18850.46060.070*
H26B1.11060.15750.42180.070*
H26C0.93140.10170.43330.070*
C270.6862 (5)0.2109 (3)0.32242 (13)0.0416 (10)
H27A0.64940.17300.29800.062*
H27B0.75680.26060.31110.062*
H27C0.57680.23250.33760.062*
C280.9630 (7)−0.0780 (3)0.35488 (15)0.0532 (12)
H28A1.0021−0.03410.37690.064*
H28B0.8833−0.12130.36980.064*
C291.3386 (8)0.0938 (4)0.21333 (19)0.0841 (19)
H29A1.40840.11030.23990.101*
H29B1.34940.14240.19190.101*
C301.0135 (8)0.1247 (4)0.20139 (15)0.0696 (16)
H30A1.05040.16130.17780.084*
H30B0.88730.11840.20820.084*
C311.2306 (8)−0.1665 (4)0.3652 (2)0.0732 (16)
C321.3789 (7)−0.2221 (4)0.3428 (2)0.094 (2)
H32A1.4944−0.21610.35890.141*
H32B1.3957−0.20190.31260.141*
H32C1.3411−0.28370.34270.141*
C330.8263 (7)0.7245 (3)0.43739 (18)0.0534 (12)
C340.8185 (9)0.8011 (3)0.46859 (19)0.0819 (18)
H34A0.94130.82610.47190.123*
H34B0.77380.78120.49720.123*
H34C0.73540.84580.45690.123*
O11.1239 (5)−0.1224 (2)0.33705 (11)0.0625 (9)
O21.2042 (7)−0.1640 (4)0.40533 (18)0.1280 (19)
O30.8996 (4)0.65128 (19)0.45704 (10)0.0473 (7)
O40.7726 (6)0.7259 (2)0.39882 (13)0.0783 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0718 (4)0.1855 (9)0.0816 (4)0.0435 (5)0.0114 (3)−0.0252 (5)
C10.039 (2)0.044 (3)0.035 (2)−0.0083 (19)0.0101 (17)−0.0059 (19)
C20.047 (2)0.037 (3)0.042 (2)−0.010 (2)0.0035 (19)−0.0031 (19)
C30.050 (2)0.032 (2)0.033 (2)0.0026 (19)−0.0026 (18)−0.0114 (18)
C40.0410 (19)0.038 (2)0.0307 (19)0.001 (2)0.0084 (16)−0.0040 (19)
C50.0329 (19)0.032 (2)0.029 (2)−0.0004 (17)0.0074 (16)0.0006 (17)
C60.046 (2)0.042 (3)0.041 (2)−0.008 (2)0.0186 (19)−0.001 (2)
C70.044 (2)0.033 (2)0.038 (2)−0.0085 (19)0.0154 (18)0.0018 (19)
C80.0327 (18)0.031 (2)0.0285 (19)−0.0018 (17)0.0032 (16)0.0014 (17)
C90.0260 (17)0.036 (2)0.0257 (18)0.0005 (16)0.0028 (14)0.0018 (16)
C100.0263 (18)0.033 (2)0.0250 (18)−0.0032 (16)−0.0006 (15)0.0006 (17)
C110.0321 (19)0.038 (2)0.044 (2)−0.0041 (19)0.0077 (17)−0.0048 (19)
C120.0346 (19)0.034 (2)0.041 (2)−0.0028 (17)0.0098 (18)−0.0103 (19)
C130.0304 (18)0.031 (2)0.032 (2)0.0034 (16)−0.0028 (15)0.0021 (17)
C140.0334 (18)0.031 (2)0.032 (2)−0.0026 (18)0.0030 (16)−0.0023 (17)
C150.046 (2)0.039 (3)0.048 (3)−0.005 (2)0.013 (2)−0.006 (2)
C160.056 (2)0.037 (3)0.058 (3)−0.016 (2)0.008 (2)−0.008 (2)
C170.055 (2)0.031 (2)0.041 (2)−0.002 (2)0.0046 (19)−0.004 (2)
C180.0378 (18)0.034 (2)0.0303 (18)0.0008 (18)−0.0003 (16)−0.0001 (17)
C190.050 (2)0.037 (2)0.0312 (19)0.004 (2)0.0009 (16)−0.0066 (18)
C200.060 (3)0.049 (3)0.041 (2)−0.003 (2)0.010 (2)−0.012 (2)
C210.083 (3)0.045 (3)0.047 (3)−0.004 (3)0.009 (2)−0.012 (2)
C220.069 (3)0.038 (3)0.058 (3)−0.007 (2)0.001 (2)−0.007 (2)
C230.049 (2)0.052 (3)0.082 (3)−0.001 (2)0.024 (2)−0.021 (3)
C240.078 (3)0.049 (3)0.029 (2)−0.007 (3)0.0065 (19)−0.004 (2)
C250.042 (2)0.047 (3)0.045 (2)0.006 (2)−0.0109 (19)−0.005 (2)
C260.066 (3)0.041 (3)0.033 (2)0.001 (2)−0.008 (2)0.007 (2)
C270.0335 (19)0.051 (3)0.041 (2)0.0097 (19)−0.0099 (17)−0.004 (2)
C280.072 (3)0.036 (3)0.052 (3)0.003 (3)0.003 (2)0.007 (2)
C290.075 (3)0.115 (5)0.062 (3)−0.033 (4)0.011 (3)−0.009 (4)
C300.089 (4)0.078 (4)0.041 (3)0.016 (3)0.004 (3)0.008 (3)
C310.066 (3)0.074 (4)0.079 (4)−0.009 (3)−0.014 (3)0.001 (4)
C320.065 (3)0.064 (4)0.153 (6)0.014 (3)−0.022 (4)−0.005 (4)
C330.056 (3)0.040 (3)0.064 (3)−0.004 (2)0.006 (2)−0.006 (3)
C340.107 (4)0.046 (3)0.093 (4)−0.001 (3)0.018 (4)−0.025 (3)
O10.078 (2)0.054 (2)0.055 (2)0.0185 (19)−0.0040 (17)0.0052 (17)
O20.109 (3)0.179 (5)0.097 (3)0.039 (3)−0.026 (3)0.022 (3)
O30.0630 (18)0.0353 (18)0.0435 (16)0.0022 (15)−0.0035 (14)−0.0104 (14)
O40.108 (3)0.049 (2)0.078 (3)0.013 (2)−0.027 (2)0.005 (2)

Geometric parameters (Å, °)

Br1—C291.943 (6)C17—C281.550 (6)
C1—C21.537 (5)C17—C181.559 (5)
C1—C101.539 (5)C18—C191.530 (5)
C1—H1A0.9700C18—H180.9800
C1—H1B0.9700C19—C201.522 (6)
C2—C31.504 (6)C19—C211.563 (6)
C2—H2A0.9700C19—H190.9800
C2—H2B0.9700C20—C301.320 (6)
C3—O31.464 (5)C20—C291.473 (7)
C3—C41.542 (6)C21—C221.540 (7)
C3—H30.9800C21—H21A0.9700
C4—C241.534 (5)C21—H21B0.9700
C4—C231.544 (5)C22—H22A0.9700
C4—C51.563 (5)C22—H22B0.9700
C5—C61.546 (5)C23—H23A0.9600
C5—C101.551 (5)C23—H23B0.9600
C5—H50.9800C23—H23C0.9600
C6—C71.531 (6)C24—H24A0.9600
C6—H6A0.9700C24—H24B0.9600
C6—H6B0.9700C24—H24C0.9600
C7—C81.532 (5)C25—H25A0.9600
C7—H7A0.9700C25—H25B0.9600
C7—H7B0.9700C25—H25C0.9600
C8—C261.559 (5)C26—H26A0.9600
C8—C91.574 (5)C26—H26B0.9600
C8—C141.600 (5)C26—H26C0.9600
C9—C111.525 (5)C27—H27A0.9600
C9—C101.588 (5)C27—H27B0.9600
C9—H90.9800C27—H27C0.9600
C10—C251.550 (5)C28—O11.431 (5)
C11—C121.537 (5)C28—H28A0.9700
C11—H11A0.9700C28—H28B0.9700
C11—H11B0.9700C29—H29A0.9700
C12—C131.526 (5)C29—H29B0.9700
C12—H12A0.9700C30—H30A0.9300
C12—H12B0.9700C30—H30B0.9300
C13—C181.540 (5)C31—O21.211 (7)
C13—C141.570 (5)C31—O11.313 (6)
C13—H130.9800C31—C321.504 (8)
C14—C151.558 (5)C32—H32A0.9600
C14—C271.565 (5)C32—H32B0.9600
C15—C161.541 (5)C32—H32C0.9600
C15—H15A0.9700C33—O41.213 (6)
C15—H15B0.9700C33—O31.348 (6)
C16—C171.516 (6)C33—C341.477 (7)
C16—H16A0.9700C34—H34A0.9600
C16—H16B0.9700C34—H34B0.9600
C17—C221.536 (6)C34—H34C0.9600
C2—C1—C10113.4 (3)C16—C17—C28107.3 (4)
C2—C1—H1A108.9C22—C17—C28109.6 (4)
C10—C1—H1A108.9C16—C17—C18106.4 (3)
C2—C1—H1B108.9C22—C17—C18101.1 (3)
C10—C1—H1B108.9C28—C17—C18116.4 (3)
H1A—C1—H1B107.7C19—C18—C13120.5 (3)
C3—C2—C1109.9 (3)C19—C18—C17106.0 (3)
C3—C2—H2A109.7C13—C18—C17111.6 (3)
C1—C2—H2A109.7C19—C18—H18105.9
C3—C2—H2B109.7C13—C18—H18105.9
C1—C2—H2B109.7C17—C18—H18105.9
H2A—C2—H2B108.2C20—C19—C18114.7 (3)
O3—C3—C2109.8 (3)C20—C19—C21112.7 (3)
O3—C3—C4107.9 (3)C18—C19—C21103.3 (3)
C2—C3—C4113.6 (3)C20—C19—H19108.6
O3—C3—H3108.5C18—C19—H19108.6
C2—C3—H3108.5C21—C19—H19108.6
C4—C3—H3108.5C30—C20—C29118.1 (5)
C24—C4—C3112.0 (3)C30—C20—C19123.9 (4)
C24—C4—C23108.1 (3)C29—C20—C19118.0 (5)
C3—C4—C23106.9 (3)C22—C21—C19107.5 (4)
C24—C4—C5115.1 (3)C22—C21—H21A110.2
C3—C4—C5105.8 (3)C19—C21—H21A110.2
C23—C4—C5108.8 (3)C22—C21—H21B110.2
C6—C5—C10110.1 (3)C19—C21—H21B110.2
C6—C5—C4114.3 (3)H21A—C21—H21B108.5
C10—C5—C4117.7 (3)C17—C22—C21105.9 (4)
C6—C5—H5104.4C17—C22—H22A110.6
C10—C5—H5104.4C21—C22—H22A110.6
C4—C5—H5104.4C17—C22—H22B110.6
C7—C6—C5110.5 (3)C21—C22—H22B110.6
C7—C6—H6A109.6H22A—C22—H22B108.7
C5—C6—H6A109.6C4—C23—H23A109.5
C7—C6—H6B109.6C4—C23—H23B109.5
C5—C6—H6B109.6H23A—C23—H23B109.5
H6A—C6—H6B108.1C4—C23—H23C109.5
C6—C7—C8113.7 (3)H23A—C23—H23C109.5
C6—C7—H7A108.8H23B—C23—H23C109.5
C8—C7—H7A108.8C4—C24—H24A109.5
C6—C7—H7B108.8C4—C24—H24B109.5
C8—C7—H7B108.8H24A—C24—H24B109.5
H7A—C7—H7B107.7C4—C24—H24C109.5
C7—C8—C26106.8 (3)H24A—C24—H24C109.5
C7—C8—C9109.5 (3)H24B—C24—H24C109.5
C26—C8—C9111.9 (3)C10—C25—H25A109.5
C7—C8—C14110.5 (3)C10—C25—H25B109.5
C26—C8—C14109.2 (3)H25A—C25—H25B109.5
C9—C8—C14109.0 (3)C10—C25—H25C109.5
C11—C9—C8110.4 (3)H25A—C25—H25C109.5
C11—C9—C10114.8 (3)H25B—C25—H25C109.5
C8—C9—C10116.5 (3)C8—C26—H26A109.5
C11—C9—H9104.5C8—C26—H26B109.5
C8—C9—H9104.5H26A—C26—H26B109.5
C10—C9—H9104.5C8—C26—H26C109.5
C1—C10—C25107.8 (3)H26A—C26—H26C109.5
C1—C10—C5107.7 (3)H26B—C26—H26C109.5
C25—C10—C5114.1 (3)C14—C27—H27A109.5
C1—C10—C9108.3 (3)C14—C27—H27B109.5
C25—C10—C9112.4 (3)H27A—C27—H27B109.5
C5—C10—C9106.4 (3)C14—C27—H27C109.5
C9—C11—C12113.4 (3)H27A—C27—H27C109.5
C9—C11—H11A108.9H27B—C27—H27C109.5
C12—C11—H11A108.9O1—C28—C17110.7 (3)
C9—C11—H11B108.9O1—C28—H28A109.5
C12—C11—H11B108.9C17—C28—H28A109.5
H11A—C11—H11B107.7O1—C28—H28B109.5
C13—C12—C11112.4 (3)C17—C28—H28B109.5
C13—C12—H12A109.1H28A—C28—H28B108.1
C11—C12—H12A109.1C20—C29—Br1112.4 (4)
C13—C12—H12B109.1C20—C29—H29A109.1
C11—C12—H12B109.1Br1—C29—H29A109.1
H12A—C12—H12B107.9C20—C29—H29B109.1
C12—C13—C18116.0 (3)Br1—C29—H29B109.1
C12—C13—C14110.6 (3)H29A—C29—H29B107.9
C18—C13—C14109.9 (3)C20—C30—H30A120.0
C12—C13—H13106.6C20—C30—H30B120.0
C18—C13—H13106.6H30A—C30—H30B120.0
C14—C13—H13106.6O2—C31—O1121.8 (6)
C15—C14—C27107.6 (3)O2—C31—C32124.4 (6)
C15—C14—C13110.5 (3)O1—C31—C32113.7 (6)
C27—C14—C13109.6 (3)C31—C32—H32A109.5
C15—C14—C8110.6 (3)C31—C32—H32B109.5
C27—C14—C8110.1 (3)H32A—C32—H32B109.5
C13—C14—C8108.5 (3)C31—C32—H32C109.5
C16—C15—C14115.1 (3)H32A—C32—H32C109.5
C16—C15—H15A108.5H32B—C32—H32C109.5
C14—C15—H15A108.5O4—C33—O3123.4 (4)
C16—C15—H15B108.5O4—C33—C34124.9 (5)
C14—C15—H15B108.5O3—C33—C34111.7 (5)
H15A—C15—H15B107.5C33—C34—H34A109.5
C17—C16—C15112.6 (3)C33—C34—H34B109.5
C17—C16—H16A109.1H34A—C34—H34B109.5
C15—C16—H16A109.1C33—C34—H34C109.5
C17—C16—H16B109.1H34A—C34—H34C109.5
C15—C16—H16B109.1H34B—C34—H34C109.5
H16A—C16—H16B107.8C31—O1—C28117.5 (4)
C16—C17—C22116.2 (3)C33—O3—C3118.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C32—H32A···O4i0.962.483.365 (7)154
C28—H28B···O4ii0.972.573.487 (6)158

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2584).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kim, D. S., Pezzuto, J. M. & Pisha, E. (1998). Bioorg. Med. Chem. Lett.8, 1707–1712. [PubMed]
  • Mohamed, I. E., Choudhary, M. I., Ali, S., Anjum, S. & Atta-ur-Rahman (2006). Acta Cryst. E62, o1352–o1354.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, C.-I., Wang, H.-K., Kashiwada, Y., Shen, J.-K., Cosentino, L.-M., Chen, C.-H., Yang, L.-M. & Lee, K.-H. (1998). J. Med. Chem.41, 4648–4657. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography