PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1796.
Published online 2009 July 8. doi:  10.1107/S1600536809025811
PMCID: PMC2977269

2-Benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine

Abstract

In the title compound, C31H25NO, the oxazine ring adopts a half-chair conformation. The dihedral angles between the phenyl rings and the naphthyl ring system are 70.89 (8), 37.34 (10) and 9.42 (10)°. The crystal structure is stabilized by an aromatic π–π stacking inter­action, with a centroid–centroid distance of 3.879 (3) Å.

Related literature

For the synthesis and crystal structures of oxazines, see: Alfonsov et al. (2007 [triangle]); Li et al. (2008 [triangle]). For pharmaceutical applications of oxazines, see: Peglion et al. (1997 [triangle]); Xu et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1796-scheme1.jpg

Experimental

Crystal data

  • C31H25NO
  • M r = 427.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1796-efi1.jpg
  • a = 9.0605 (18) Å
  • b = 23.475 (5) Å
  • c = 10.634 (2) Å
  • β = 97.53 (3)°
  • V = 2242.2 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.984, T max = 0.985
  • 18548 measured reflections
  • 4392 independent reflections
  • 2913 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.118
  • S = 1.00
  • 4392 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025811/rz2345sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025811/rz2345Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant (4007041028) and a Science and Technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

supplementary crystallographic information

Comment

Continuing efforts have been made to synthesize oxazine compounds (Alfonsov et al., 2007) because they are widely used as antipsychotic agents, antimalarial agents, and serotomin and dopamine receptors agonists (Peglion et al., 1997; Xu et al. 2004). We have prepared a novel compound, 2-benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine, by the reaction of 2-naphthol, benzaldehyde and phenylmethanamine, and we report in this paper its synthesis and crystal structure. The structures of some closely related compounds have been reported (Alfonsov et al., 2007; Li et al., 2008).

The molecule of the title compound has normal geometric parameters. The oxazine ring adopts a half chair conformation. The dihedral angles formed by the naphthyl ring system with the C12–C17, C19–C24 and C26–C31 phenyl rings are 70.89 (8), 37.34 (10) and 9.42 (10)°, respectively. The crystal structure is stabilized by an aromatic π–π stacking interaction involving the C26—C31 phenyl ring at (x, y, z) and the C5—C10 ring of the naphhtyl ring system at (1+x, y, z), with a centroid to centroid distance of 3.879 (3) Å.

Experimental

The title compound was one of the products of the reaction between 2-naphthol, phenylmethanamine and an excess amount of benzaldehyde. Benzaldehyde (3.18 g, 0.03 mol) and phenylmethanamine (1.605 g, 0.015 mol) were added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen atmosphere. The temperature was gradually raised to 120°C in one hour and the mixture was stirred at this temperature for 10 h. The mixture was then treated with ethanol (95%, 20 ml) and cooled to room temperature. The precipitate was filtered and washed with a small amount of ethanol. The title compound was isolated using column chromatography (petroleum ether / ethyl acetate, 2:1 v/v). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Crystal data

C31H25NOF(000) = 904
Mr = 427.52Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4392 reflections
a = 9.0605 (18) Åθ = 2.0–26.0°
b = 23.475 (5) ŵ = 0.08 mm1
c = 10.634 (2) ÅT = 293 K
β = 97.53 (3)°Block, colourless
V = 2242.2 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer4392 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
graphiteRint = 0.078
CCD_Profile_fitting scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.984, Tmax = 0.985k = −28→28
18548 measured reflectionsl = −13→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0185P)2 + 1.004P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4392 reflectionsΔρmax = 0.16 e Å3
299 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.56752 (15)0.05364 (6)0.18725 (13)0.0433 (4)
C250.6744 (2)0.09254 (9)0.25499 (19)0.0357 (5)
H25A0.69400.12270.19570.043*
C260.8189 (2)0.06072 (9)0.29206 (19)0.0368 (5)
N10.61811 (18)0.11912 (7)0.36044 (15)0.0339 (4)
C10.3834 (2)0.12590 (8)0.21580 (19)0.0355 (5)
C90.2345 (2)0.14567 (9)0.18089 (19)0.0381 (5)
C110.4930 (2)0.15723 (8)0.31138 (19)0.0354 (5)
H11A0.44050.16720.38320.043*
C20.4255 (2)0.07585 (9)0.16309 (19)0.0381 (5)
C30.3247 (2)0.04280 (10)0.0810 (2)0.0446 (6)
H3A0.35530.00860.04890.054*
C120.5533 (2)0.21233 (8)0.2623 (2)0.0365 (5)
C80.1826 (2)0.19750 (9)0.2272 (2)0.0479 (6)
H8A0.24590.21900.28460.058*
C100.1337 (2)0.11330 (10)0.0960 (2)0.0415 (5)
C200.7137 (2)0.13377 (9)0.6347 (2)0.0444 (6)
H20A0.78140.14530.58110.053*
C190.5928 (2)0.10047 (8)0.58716 (18)0.0342 (5)
C5−0.0124 (2)0.13407 (11)0.0593 (2)0.0521 (6)
H5A−0.07900.11290.00390.062*
C310.8413 (2)0.00538 (9)0.2547 (2)0.0453 (6)
H31A0.7636−0.01470.20890.054*
C40.1826 (2)0.06123 (10)0.0491 (2)0.0463 (6)
H4A0.11630.0392−0.00460.056*
C281.0728 (3)0.06368 (11)0.3912 (2)0.0540 (6)
H28A1.15060.08340.43780.065*
C270.9361 (2)0.08953 (10)0.3615 (2)0.0444 (6)
H27A0.92230.12660.38830.053*
C180.5762 (2)0.07786 (8)0.45383 (19)0.0383 (5)
H18A0.63750.04410.45180.046*
H18B0.47340.06660.42940.046*
C220.6355 (3)0.13384 (11)0.8404 (2)0.0562 (7)
H22A0.64950.14520.92490.067*
C170.5268 (2)0.22873 (10)0.1367 (2)0.0468 (6)
H17A0.46950.20550.07850.056*
C70.0414 (3)0.21641 (10)0.1892 (2)0.0556 (7)
H7A0.00990.25080.22020.067*
C291.0949 (3)0.00892 (11)0.3522 (2)0.0567 (7)
H29A1.1876−0.00830.37120.068*
C240.4939 (2)0.08446 (9)0.6690 (2)0.0451 (6)
H24A0.41150.06240.63900.054*
C230.5154 (3)0.10079 (11)0.7951 (2)0.0559 (7)
H23A0.44830.08930.84930.067*
C300.9789 (3)−0.02034 (11)0.2850 (2)0.0554 (6)
H30A0.9930−0.05770.25980.067*
C6−0.0562 (3)0.18458 (11)0.1040 (2)0.0579 (7)
H6A−0.15170.19810.07780.069*
C130.6384 (3)0.24804 (10)0.3467 (2)0.0526 (6)
H13A0.65720.23790.43190.063*
C210.7349 (3)0.15011 (10)0.7604 (2)0.0516 (6)
H21A0.81690.17220.79100.062*
C160.5843 (3)0.27926 (11)0.0957 (3)0.0605 (7)
H16A0.56580.28970.01080.073*
C140.6956 (3)0.29827 (11)0.3065 (3)0.0687 (8)
H14A0.75260.32170.36440.082*
C150.6686 (3)0.31363 (11)0.1813 (3)0.0690 (8)
H15A0.70750.34750.15420.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0346 (8)0.0491 (9)0.0444 (9)0.0029 (7)−0.0015 (7)−0.0122 (7)
C250.0343 (12)0.0402 (12)0.0318 (12)−0.0006 (9)0.0013 (10)0.0008 (9)
C260.0339 (12)0.0455 (13)0.0312 (12)0.0038 (9)0.0049 (9)0.0031 (10)
N10.0352 (10)0.0362 (10)0.0301 (10)0.0026 (7)0.0036 (8)0.0017 (7)
C10.0319 (12)0.0409 (12)0.0338 (12)−0.0016 (9)0.0043 (9)−0.0002 (9)
C90.0306 (12)0.0461 (13)0.0376 (12)−0.0002 (9)0.0049 (10)0.0052 (10)
C110.0329 (12)0.0384 (12)0.0349 (12)0.0037 (9)0.0042 (10)−0.0016 (9)
C20.0316 (12)0.0482 (13)0.0336 (12)0.0016 (10)0.0010 (10)−0.0002 (10)
C30.0443 (14)0.0490 (14)0.0397 (13)−0.0019 (10)0.0024 (11)−0.0081 (10)
C120.0321 (12)0.0360 (11)0.0416 (13)0.0047 (9)0.0055 (10)−0.0007 (10)
C80.0348 (13)0.0492 (14)0.0592 (16)0.0011 (10)0.0040 (11)0.0008 (12)
C100.0321 (12)0.0559 (14)0.0362 (13)−0.0023 (10)0.0033 (10)0.0064 (10)
C200.0430 (14)0.0494 (14)0.0402 (13)−0.0030 (10)0.0026 (11)0.0015 (11)
C190.0358 (12)0.0346 (11)0.0318 (12)0.0047 (9)0.0028 (10)0.0020 (9)
C50.0346 (13)0.0691 (17)0.0504 (15)−0.0039 (12)−0.0023 (11)0.0095 (13)
C310.0417 (13)0.0490 (14)0.0453 (14)0.0050 (10)0.0063 (11)−0.0025 (11)
C40.0402 (14)0.0597 (15)0.0374 (13)−0.0096 (11)−0.0015 (11)−0.0062 (11)
C280.0372 (14)0.0750 (18)0.0477 (15)0.0006 (12)−0.0022 (11)0.0039 (13)
C270.0371 (13)0.0496 (14)0.0456 (14)0.0006 (10)0.0016 (11)−0.0013 (11)
C180.0405 (12)0.0369 (12)0.0365 (12)−0.0019 (9)0.0015 (10)0.0018 (9)
C220.0662 (18)0.0647 (17)0.0356 (14)0.0103 (13)−0.0016 (13)−0.0081 (12)
C170.0411 (14)0.0502 (14)0.0482 (15)0.0033 (11)0.0026 (11)0.0053 (11)
C70.0411 (14)0.0532 (15)0.0726 (18)0.0067 (11)0.0084 (13)0.0016 (13)
C290.0434 (15)0.0744 (18)0.0518 (16)0.0189 (13)0.0039 (13)0.0139 (14)
C240.0407 (13)0.0502 (14)0.0449 (14)−0.0008 (10)0.0073 (11)0.0007 (11)
C230.0603 (17)0.0700 (17)0.0393 (15)0.0053 (13)0.0133 (13)0.0032 (12)
C300.0577 (16)0.0529 (15)0.0556 (16)0.0176 (12)0.0071 (13)0.0022 (12)
C60.0342 (13)0.0682 (17)0.0700 (18)0.0065 (12)0.0023 (13)0.0140 (14)
C130.0593 (16)0.0478 (14)0.0493 (15)−0.0060 (12)0.0017 (12)−0.0028 (11)
C210.0534 (15)0.0517 (15)0.0460 (15)−0.0009 (11)−0.0074 (12)−0.0062 (12)
C160.0573 (17)0.0621 (17)0.0625 (18)0.0062 (13)0.0096 (14)0.0234 (14)
C140.074 (2)0.0496 (16)0.081 (2)−0.0176 (14)0.0049 (16)−0.0066 (15)
C150.0667 (19)0.0464 (16)0.095 (2)−0.0081 (13)0.0134 (17)0.0165 (15)

Geometric parameters (Å, °)

O1—C21.381 (2)C31—C301.385 (3)
O1—C251.452 (2)C31—H31A0.9300
C25—N11.434 (2)C4—H4A0.9300
C25—C261.514 (3)C28—C291.373 (3)
C25—H25A0.9800C28—C271.379 (3)
C26—C311.381 (3)C28—H28A0.9300
C26—C271.387 (3)C27—H27A0.9300
N1—C181.472 (2)C18—H18A0.9700
N1—C111.484 (2)C18—H18B0.9700
C1—C21.377 (3)C22—C231.371 (3)
C1—C91.429 (3)C22—C211.372 (3)
C1—C111.515 (3)C22—H22A0.9300
C9—C81.416 (3)C17—C161.388 (3)
C9—C101.418 (3)C17—H17A0.9300
C11—C121.523 (3)C7—C61.396 (3)
C11—H11A0.9800C7—H7A0.9300
C2—C31.411 (3)C29—C301.375 (3)
C3—C41.358 (3)C29—H29A0.9300
C3—H3A0.9300C24—C231.383 (3)
C12—C171.381 (3)C24—H24A0.9300
C12—C131.386 (3)C23—H23A0.9300
C8—C71.364 (3)C30—H30A0.9300
C8—H8A0.9300C6—H6A0.9300
C10—C41.413 (3)C13—C141.378 (3)
C10—C51.417 (3)C13—H13A0.9300
C20—C211.379 (3)C21—H21A0.9300
C20—C191.386 (3)C16—C151.371 (4)
C20—H20A0.9300C16—H16A0.9300
C19—C241.381 (3)C14—C151.370 (4)
C19—C181.503 (3)C14—H14A0.9300
C5—C61.356 (3)C15—H15A0.9300
C5—H5A0.9300
C2—O1—C25113.55 (15)C3—C4—H4A119.4
N1—C25—O1112.28 (16)C10—C4—H4A119.4
N1—C25—C26113.27 (16)C29—C28—C27120.3 (2)
O1—C25—C26108.46 (16)C29—C28—H28A119.8
N1—C25—H25A107.5C27—C28—H28A119.8
O1—C25—H25A107.5C28—C27—C26120.6 (2)
C26—C25—H25A107.5C28—C27—H27A119.7
C31—C26—C27118.7 (2)C26—C27—H27A119.7
C31—C26—C25122.93 (19)N1—C18—C19113.65 (16)
C27—C26—C25118.26 (19)N1—C18—H18A108.8
C25—N1—C18113.00 (16)C19—C18—H18A108.8
C25—N1—C11108.72 (15)N1—C18—H18B108.8
C18—N1—C11112.38 (15)C19—C18—H18B108.8
C2—C1—C9118.28 (19)H18A—C18—H18B107.7
C2—C1—C11119.68 (18)C23—C22—C21119.7 (2)
C9—C1—C11122.01 (18)C23—C22—H22A120.2
C8—C9—C10117.80 (19)C21—C22—H22A120.2
C8—C9—C1122.3 (2)C12—C17—C16121.1 (2)
C10—C9—C1119.92 (19)C12—C17—H17A119.5
N1—C11—C1110.28 (16)C16—C17—H17A119.5
N1—C11—C12109.90 (16)C8—C7—C6120.5 (2)
C1—C11—C12114.56 (17)C8—C7—H7A119.7
N1—C11—H11A107.3C6—C7—H7A119.7
C1—C11—H11A107.3C28—C29—C30119.5 (2)
C12—C11—H11A107.3C28—C29—H29A120.2
O1—C2—C1123.19 (18)C30—C29—H29A120.2
O1—C2—C3114.81 (18)C19—C24—C23121.0 (2)
C1—C2—C3122.00 (19)C19—C24—H24A119.5
C4—C3—C2119.7 (2)C23—C24—H24A119.5
C4—C3—H3A120.2C22—C23—C24120.1 (2)
C2—C3—H3A120.2C22—C23—H23A120.0
C17—C12—C13118.0 (2)C24—C23—H23A120.0
C17—C12—C11122.93 (19)C29—C30—C31120.4 (2)
C13—C12—C11119.07 (19)C29—C30—H30A119.8
C7—C8—C9121.2 (2)C31—C30—H30A119.8
C7—C8—H8A119.4C5—C6—C7120.4 (2)
C9—C8—H8A119.4C5—C6—H6A119.8
C4—C10—C5121.7 (2)C7—C6—H6A119.8
C4—C10—C9118.9 (2)C14—C13—C12121.1 (2)
C5—C10—C9119.4 (2)C14—C13—H13A119.5
C21—C20—C19120.9 (2)C12—C13—H13A119.5
C21—C20—H20A119.6C22—C21—C20120.3 (2)
C19—C20—H20A119.6C22—C21—H21A119.9
C24—C19—C20118.1 (2)C20—C21—H21A119.9
C24—C19—C18120.37 (19)C15—C16—C17119.6 (2)
C20—C19—C18121.34 (19)C15—C16—H16A120.2
C6—C5—C10120.7 (2)C17—C16—H16A120.2
C6—C5—H5A119.7C15—C14—C13120.0 (3)
C10—C5—H5A119.7C15—C14—H14A120.0
C26—C31—C30120.3 (2)C13—C14—H14A120.0
C26—C31—H31A119.8C14—C15—C16120.2 (2)
C30—C31—H31A119.8C14—C15—H15A119.9
C3—C4—C10121.2 (2)C16—C15—H15A119.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2345).

References

  • Alfonsov, V. A., Metlushka, K. E., McKenna, C. E., Kashemirov, B. A., Kataeva, O. N., Zheltukhin, V. F., Sadkova, D. N. & Dobrynin, A. B. (2007). Synlett, 3, 488–490.
  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o1972. [PMC free article] [PubMed]
  • Peglion, J. L., Vian, J., Gourment, B., Despaux, N., Audinot, V. & Millan, M. (1997). Bioorg. Med. Chem. Lett.7, 881–886.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, A15, 475–479.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography