PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1846.
Published online 2009 July 11. doi:  10.1107/S1600536809026014
PMCID: PMC2977268

1,5-Bis(2-chloro­benzyl­idene)carbonohydrazide

Abstract

In the title mol­ecule, C15H12Cl2N4O, the two benzene rings are inclined at a dihedral angle of 14.5 (2)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into chains propagated in [001].

Related literature

For related structures, see: Meyers et al. (1995 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1846-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N4O
  • M r = 335.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1846-efi1.jpg
  • a = 10.7889 (11) Å
  • b = 15.7117 (19) Å
  • c = 9.0543 (10) Å
  • β = 90.978 (1)°
  • V = 1534.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 298 K
  • 0.49 × 0.43 × 0.42 mm

Data collection

  • Bruker SMART APEX CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.817, T max = 0.840
  • 7395 measured reflections
  • 2684 independent reflections
  • 1698 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.186
  • S = 1.05
  • 2684 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026014/cv2581sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026014/cv2581Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the University Student Science and Technology Culture Foundation of Liaocheng University (grant No. SRT08040HX2).

supplementary crystallographic information

Comment

In continuation of our ongoing program directed to the development of environmentally benign methods of chemical synthesis (Li et al., 2008), we present here a user-friendly, solvent-free protocol for the synthesis of substituted carbonohydrazide starting from the fragrant aldehydes and carbohydrazide under solvent-free conditions. Using this method, we obtained the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). Two benzene rings - C3-C8 and C10-C15, respectively - form a dihedral angle of 14.46 (22)°. Intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001].

Experimental

o-Chlorobenzaldehyde (10 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring 2 h at 373 K, tthe resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C15H12Cl2N4O: C 53.75, H 3.61, N 16.72%; found: C 53.61, H 3.47, N 16.86%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (C, N).

Figures

Fig. 1.
View of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C15H12Cl2N4OF(000) = 688
Mr = 335.19Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7889 (11) ÅCell parameters from 2356 reflections
b = 15.7117 (19) Åθ = 2.3–24.5°
c = 9.0543 (10) ŵ = 0.43 mm1
β = 90.978 (1)°T = 298 K
V = 1534.6 (3) Å3Block, colourless
Z = 40.49 × 0.43 × 0.42 mm

Data collection

Bruker SMART APEX CCD area detector diffractometer2684 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→9
Tmin = 0.817, Tmax = 0.840k = −18→16
7395 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.078P)2 + 1.6963P] where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.51332 (15)1.04600 (9)0.84330 (14)0.0807 (5)
Cl20.80060 (18)0.37748 (9)0.60557 (19)0.0947 (6)
N10.7405 (3)0.8270 (2)0.5515 (3)0.0456 (9)
H10.74710.81450.64370.055*
N20.7084 (3)0.9075 (2)0.5094 (3)0.0423 (8)
N30.7868 (3)0.6899 (2)0.5048 (3)0.0464 (9)
H30.78270.68160.59850.056*
N40.8187 (3)0.6250 (2)0.4132 (4)0.0426 (8)
O10.7578 (3)0.78083 (18)0.3143 (3)0.0475 (8)
C10.7618 (4)0.7667 (2)0.4473 (4)0.0378 (9)
C20.6644 (4)0.9532 (2)0.6101 (4)0.0419 (10)
H20.65280.93010.70330.050*
C30.6312 (4)1.0421 (2)0.5826 (4)0.0395 (10)
C40.5660 (4)1.0907 (3)0.6806 (5)0.0453 (10)
C50.5367 (4)1.1746 (3)0.6544 (5)0.0517 (12)
H50.49271.20540.72380.062*
C60.5721 (5)1.2122 (3)0.5267 (6)0.0613 (13)
H60.55271.26880.50760.074*
C70.6368 (5)1.1654 (3)0.4267 (6)0.0680 (15)
H70.66161.19090.33930.082*
C80.6660 (5)1.0818 (3)0.4524 (5)0.0565 (12)
H80.70961.05130.38220.068*
C90.8362 (4)0.5526 (3)0.4735 (5)0.0437 (10)
H90.82310.54590.57410.052*
C100.8763 (4)0.4803 (3)0.3864 (5)0.0431 (10)
C110.8636 (4)0.3978 (3)0.4351 (5)0.0520 (12)
C120.8999 (5)0.3289 (3)0.3534 (6)0.0650 (14)
H120.88900.27390.38910.078*
C130.9525 (5)0.3422 (4)0.2186 (7)0.0732 (16)
H130.97590.29610.16090.088*
C140.9704 (5)0.4233 (4)0.1697 (6)0.0709 (15)
H141.00890.43220.07980.085*
C150.9330 (4)0.4914 (3)0.2500 (5)0.0571 (12)
H150.94520.54610.21370.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1164 (12)0.0797 (10)0.0469 (8)0.0203 (8)0.0270 (7)0.0101 (7)
Cl20.1447 (15)0.0585 (9)0.0822 (11)−0.0191 (9)0.0411 (10)0.0013 (7)
N10.075 (3)0.042 (2)0.0196 (17)0.0078 (17)−0.0050 (16)0.0013 (14)
N20.061 (2)0.0383 (19)0.0277 (19)0.0013 (16)−0.0016 (16)0.0000 (15)
N30.079 (3)0.041 (2)0.0188 (17)0.0157 (17)0.0018 (16)−0.0016 (14)
N40.054 (2)0.044 (2)0.0292 (18)0.0058 (16)0.0002 (16)−0.0069 (15)
O10.071 (2)0.0476 (17)0.0244 (15)0.0036 (14)0.0041 (13)0.0021 (12)
C10.047 (2)0.044 (2)0.022 (2)0.0017 (18)0.0001 (17)−0.0020 (17)
C20.057 (3)0.039 (2)0.030 (2)−0.0028 (19)−0.0057 (19)0.0030 (19)
C30.044 (2)0.040 (2)0.034 (2)−0.0051 (18)−0.0049 (18)−0.0037 (18)
C40.055 (3)0.045 (2)0.035 (2)0.000 (2)−0.0050 (19)−0.0016 (19)
C50.059 (3)0.044 (3)0.053 (3)0.002 (2)−0.005 (2)−0.010 (2)
C60.079 (4)0.033 (2)0.072 (4)0.001 (2)−0.007 (3)0.006 (2)
C70.093 (4)0.050 (3)0.061 (3)0.001 (3)0.022 (3)0.014 (2)
C80.078 (3)0.043 (3)0.048 (3)0.004 (2)0.013 (2)0.009 (2)
C90.055 (3)0.046 (2)0.030 (2)0.004 (2)−0.0016 (18)−0.0003 (19)
C100.046 (3)0.045 (2)0.039 (2)0.0059 (19)−0.0049 (19)−0.0026 (19)
C110.056 (3)0.045 (3)0.055 (3)−0.004 (2)0.004 (2)−0.007 (2)
C120.075 (3)0.042 (3)0.078 (4)0.001 (2)0.006 (3)−0.011 (2)
C130.078 (4)0.062 (3)0.080 (4)0.016 (3)−0.003 (3)−0.033 (3)
C140.076 (4)0.085 (4)0.052 (3)0.019 (3)0.015 (3)−0.010 (3)
C150.067 (3)0.061 (3)0.044 (3)0.013 (2)0.000 (2)−0.002 (2)

Geometric parameters (Å, °)

Cl1—C41.737 (4)C6—C71.367 (7)
Cl2—C111.727 (5)C6—H60.9300
N1—C11.360 (5)C7—C81.370 (7)
N1—N21.364 (5)C7—H70.9300
N1—H10.8600C8—H80.9300
N2—C21.260 (5)C9—C101.452 (6)
N3—C11.339 (5)C9—H90.9300
N3—N41.361 (4)C10—C111.377 (6)
N3—H30.8600C10—C151.398 (6)
N4—C91.275 (5)C11—C121.373 (6)
O1—C11.224 (4)C12—C131.371 (8)
C2—C31.461 (5)C12—H120.9300
C2—H20.9300C13—C141.365 (8)
C3—C41.374 (6)C13—H130.9300
C3—C81.391 (6)C14—C151.358 (7)
C4—C51.374 (6)C14—H140.9300
C5—C61.360 (7)C15—H150.9300
C5—H50.9300
C1—N1—N2119.8 (3)C6—C7—H7119.3
C1—N1—H1120.1C8—C7—H7119.3
N2—N1—H1120.1C7—C8—C3120.6 (4)
C2—N2—N1115.0 (3)C7—C8—H8119.7
C1—N3—N4119.3 (3)C3—C8—H8119.7
C1—N3—H3120.4N4—C9—C10120.6 (4)
N4—N3—H3120.4N4—C9—H9119.7
C9—N4—N3116.4 (3)C10—C9—H9119.7
O1—C1—N3123.3 (4)C11—C10—C15116.6 (4)
O1—C1—N1123.5 (4)C11—C10—C9122.0 (4)
N3—C1—N1113.2 (3)C15—C10—C9121.5 (4)
N2—C2—C3121.0 (4)C12—C11—C10122.6 (4)
N2—C2—H2119.5C12—C11—Cl2117.1 (4)
C3—C2—H2119.5C10—C11—Cl2120.2 (3)
C4—C3—C8116.5 (4)C13—C12—C11119.1 (5)
C4—C3—C2123.2 (4)C13—C12—H12120.5
C8—C3—C2120.3 (4)C11—C12—H12120.5
C3—C4—C5122.7 (4)C14—C13—C12119.6 (5)
C3—C4—Cl1120.1 (3)C14—C13—H13120.2
C5—C4—Cl1117.2 (3)C12—C13—H13120.2
C6—C5—C4119.7 (4)C15—C14—C13121.1 (5)
C6—C5—H5120.1C15—C14—H14119.5
C4—C5—H5120.1C13—C14—H14119.5
C5—C6—C7119.0 (4)C14—C15—C10120.9 (5)
C5—C6—H6120.5C14—C15—H15119.5
C7—C6—H6120.5C10—C15—H15119.5
C6—C7—C8121.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.152.925 (4)149
N3—H3···O1i0.862.062.863 (4)154

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2581).

References

  • Li, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665. [PMC free article] [PubMed]
  • Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography