PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1727.
Published online 2009 July 1. doi:  10.1107/S1600536809024635
PMCID: PMC2977267

2-[2-Benzoyl-3,3-bis­(methyl­sulfan­yl)prop-2-enyl­idene]malononitrile

Abstract

The title compound, C15H12N2OS2, is an example of a push–pull butadiene in which the electron-releasing methyl­sulfanyl groups and electron-withdrawing nitrile groups on either end of the butadiene chain enhance the conjugation in the system. Short intra­molecular C—H(...)S inter­actions are observed. In the crystal structure, an O(...)C short contact of 2.917 (3) Å is observed.

Related literature

The title compound was obtained during the synthesis of pyr­idene derivatives, see: Anabha & Asokan (2006 [triangle]). In push–pull butadienes, the C=C double bonds usually become more polarized due to π-electron delocalization (Dahne, 1978 [triangle]; Michalik et al., 2002 [triangle]). For related structures, see: Dastidar et al. (1993 [triangle]); Freier et al. (1999 [triangle]); Homrighausen & Krause Bauer (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1727-scheme1.jpg

Experimental

Crystal data

  • C15H12N2OS2
  • M r = 300.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1727-efi1.jpg
  • a = 5.6557 (2) Å
  • b = 8.5153 (3) Å
  • c = 31.4726 (11) Å
  • β = 90.106 (2)°
  • V = 1515.72 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 298 K
  • 0.40 × 0.35 × 0.30 mm

Data collection

  • MacScience DIPLabo 32001 diffractometer
  • Absorption correction: none
  • 9663 measured reflections
  • 2816 independent reflections
  • 2338 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.128
  • S = 1.13
  • 2816 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: XPRESS (MacScience, 2002 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024635/ci2822sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024635/ci2822Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the late Dr C. V. Asokan for all the help received, especially in the synthesis of the compound. The authors acknowledge the National Single Crystal Diffractometer Facility, Department of Studies in Physics, University of Mysore, Manasagangothri, for help with the data collection. NJ is grateful to the UGC, New Delhi, Government of India, for providing a teaching fellowship.

supplementary crystallographic information

Comment

The title compound belongs to the class of push-pull butadiene as they have electron releasing methyl sulfanyl groups and electron withdrawing nitrile groups attached to the terminal carbon atoms of the butadiene moiety. The butadiene molecules are characterized by significant π-electron interactions between donor and acceptor groups and the diene double bond system. Usually C═C double bonds become more polarized due to π-electron delocalization (Dahne, 1978; Michalik et al., 2002). They are important as pivots for the synthesis of heterocycles especially pyridine derivatives. The title compound was obtained during the synthesis of pyridene derivatives (Anabha et al., 2006) and its crystal and molecular structure was determined to study the influence of aroyl group on the steriochemistry of the butadiene molecule.

A perspective view of the title molecule is shown in Fig.1. The two double bonds in the butadiene moiety are arranged in a transoid manner. The lengths of the C8—C9 [1.366 (3) Å] and C13—C12 [1.352 (3) Å] double bonds and C8—C12 [1.439 (3) Å] single bond indicate conjugation. The butadiene unit is almost planar as evidenced by the torsion angles C9—C8—C12—C13, C8—C12—C13—C14 and C12—C8—C9—S1 of -167.0 (2)°, 6.1 (4)° and 17.8 (3)°, respectively. The two methylsulfanyl groups (–SCH3) are oriented in such a way as to avoid the interaction between them as is evident from the torsion angles C10—S2—C9—C8 of -129.17 (19)° and C11—S1—C9—C8 of -148.69 (19)°. Crystal structures of other butadiene compounds reported also show similar geometric parameters (Dastidar et al.., 1993; Michalik et al., 2002; Freier et al.,1999; Homrighausen et al., 2004).

Weak intramolecular C—H···S interactions are observed (Table 1). In the crystal structure a O1···C14(1-x, y, z) short contact [2.917 (3) Å] is observed.

Experimental

2-Benzoyl-2-[3,3-bis(methylsulfanyl)-2-propylidene]malononitrile was synthesized as follows: A mixture of malononitrile (500 mg, 7.5 mmol), ammonium acetate (1.5 g, 20 mmol) and acetic acid (5 ml) was heated to 343 K and then 2-benzoyl-3,3-bis(methylsulfanyl)acrylaldehyde (5 mmol) was added. The reaction mixture was stirred for 5 minutes at the same temperature, cooled to room temperature and then poured into ice-cold water. The solid separated was filtered, dissolved in chloroform, dried over anhydrous sodium sulfate and then the solvent was evaporated. The crude product obtained was recrystallized from hexane-ethyl acetate solvent mixture.

Refinement

All H atoms were positioned geometrically and allowed to ride with parent atoms, with C-H distances of 0.93 or 0.96 A. Their isotropic displacement parameters were defined as Uiso = 1.5Ueq(C) for the methyl H atoms and Uiso = 1.2Ueq(C) for all other atoms.

Figures

Fig. 1.
An ORTEPII (Johnson, 1976) view of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C15H12N2OS2F(000) = 624
Mr = 300.39Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9663 reflections
a = 5.6557 (2) Åθ = 1.3–25.5°
b = 8.5153 (3) ŵ = 0.35 mm1
c = 31.4726 (11) ÅT = 298 K
β = 90.106 (2)°Block, pale yellow
V = 1515.72 (9) Å30.40 × 0.35 × 0.30 mm
Z = 4

Data collection

MacScience DIPLabo 32001 diffractometer2338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 25.5°, θmin = 1.3°
Detector resolution: 10.0 pixels mm-1h = −6→6
ω scansk = −10→8
9663 measured reflectionsl = −32→38
2816 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0656P)2 + 0.4642P] where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.00111 (11)0.11114 (7)0.06548 (2)0.0548 (2)
S2−0.42287 (10)0.19748 (8)0.11875 (2)0.0644 (2)
C130.1963 (4)0.6023 (2)0.06658 (7)0.0428 (5)
C8−0.0899 (3)0.4037 (2)0.09460 (6)0.0416 (5)
O1−0.3112 (3)0.6304 (2)0.11057 (6)0.0612 (5)
C140.1880 (4)0.7065 (3)0.10221 (8)0.0476 (5)
C7−0.2105 (3)0.5153 (3)0.12490 (7)0.0442 (5)
C4−0.2015 (4)0.4849 (3)0.17132 (7)0.0471 (5)
C9−0.1611 (4)0.2504 (3)0.09308 (6)0.0433 (5)
N10.1825 (4)0.7886 (3)0.13089 (8)0.0688 (6)
N20.4570 (5)0.6939 (3)0.00423 (8)0.0775 (7)
C120.0782 (4)0.4644 (3)0.06452 (7)0.0436 (5)
H120.10910.40170.04100.052*
C150.3442 (4)0.6523 (3)0.03182 (8)0.0531 (6)
C3−0.0286 (5)0.3946 (3)0.18964 (8)0.0632 (7)
H30.08840.34890.17300.076*
C11−0.2165 (5)−0.0279 (3)0.04676 (9)0.0673 (7)
H11A−0.2667−0.09310.06990.101*
H11B−0.1483−0.09230.02490.101*
H11C−0.35020.02770.03540.101*
C10−0.3350 (6)0.0311 (4)0.15069 (10)0.0833 (9)
H10A−0.2272−0.03330.13490.125*
H10B−0.4722−0.02930.15810.125*
H10C−0.25880.06750.17610.125*
C5−0.3728 (5)0.5550 (4)0.19670 (8)0.0672 (7)
H5−0.48620.62000.18450.081*
C1−0.2049 (7)0.4371 (5)0.25760 (9)0.0886 (10)
H1−0.20810.41900.28670.106*
C6−0.3743 (6)0.5282 (5)0.23948 (10)0.0907 (10)
H6−0.49180.57260.25630.109*
C2−0.0300 (7)0.3719 (4)0.23359 (10)0.0841 (9)
H20.08810.31240.24650.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0588 (4)0.0489 (4)0.0568 (4)−0.0146 (3)0.0101 (3)−0.0086 (3)
S20.0452 (3)0.0742 (5)0.0739 (5)−0.0231 (3)0.0133 (3)−0.0116 (3)
C130.0436 (11)0.0424 (11)0.0423 (11)−0.0046 (9)−0.0006 (8)0.0003 (9)
C80.0394 (10)0.0470 (11)0.0384 (11)−0.0078 (9)−0.0043 (8)−0.0007 (9)
O10.0509 (9)0.0683 (11)0.0644 (11)0.0137 (8)0.0015 (8)0.0101 (9)
C140.0399 (11)0.0470 (12)0.0560 (14)−0.0030 (9)−0.0046 (9)−0.0036 (11)
C70.0329 (9)0.0503 (12)0.0493 (12)−0.0041 (9)−0.0017 (8)−0.0002 (10)
C40.0448 (11)0.0511 (12)0.0453 (12)−0.0066 (9)−0.0003 (9)−0.0023 (10)
C90.0411 (10)0.0502 (12)0.0384 (11)−0.0111 (9)−0.0021 (8)−0.0014 (9)
N10.0609 (13)0.0696 (14)0.0758 (15)−0.0004 (10)−0.0015 (11)−0.0257 (13)
N20.0999 (18)0.0699 (15)0.0628 (14)−0.0293 (13)0.0150 (13)0.0073 (12)
C120.0479 (11)0.0463 (12)0.0367 (11)−0.0061 (9)0.0003 (8)−0.0033 (9)
C150.0646 (14)0.0431 (12)0.0517 (14)−0.0139 (11)0.0008 (11)0.0007 (11)
C30.0706 (16)0.0651 (16)0.0538 (15)0.0063 (13)−0.0092 (12)−0.0026 (12)
C110.0893 (18)0.0542 (14)0.0584 (15)−0.0278 (13)0.0043 (13)−0.0119 (12)
C100.109 (2)0.081 (2)0.0601 (17)−0.0354 (18)0.0254 (16)0.0058 (15)
C50.0591 (14)0.0854 (19)0.0571 (16)0.0016 (14)0.0114 (12)−0.0041 (14)
C10.116 (3)0.107 (3)0.0429 (15)−0.017 (2)0.0079 (16)0.0082 (17)
C60.088 (2)0.130 (3)0.0549 (18)0.003 (2)0.0176 (16)−0.0021 (19)
C20.104 (2)0.084 (2)0.0641 (19)0.0032 (18)−0.0244 (17)0.0116 (16)

Geometric parameters (Å, °)

S1—C91.734 (2)C12—H120.93
S1—C111.806 (2)C3—C21.397 (4)
S2—C91.747 (2)C3—H30.93
S2—C101.806 (3)C11—H11A0.96
C13—C121.352 (3)C11—H11B0.96
C13—C141.431 (3)C11—H11C0.96
C13—C151.443 (3)C10—H10A0.96
C8—C91.366 (3)C10—H10B0.96
C8—C121.439 (3)C10—H10C0.96
C8—C71.510 (3)C5—C61.365 (4)
O1—C71.220 (3)C5—H50.93
C14—N11.142 (3)C1—C61.358 (5)
C7—C41.485 (3)C1—C21.364 (5)
C4—C31.371 (3)C1—H10.93
C4—C51.391 (3)C6—H60.93
N2—C151.135 (3)C2—H20.93
C9—S1—C11104.55 (12)S1—C11—H11A109.5
C9—S2—C10103.13 (13)S1—C11—H11B109.5
C12—C13—C14124.00 (19)H11A—C11—H11B109.5
C12—C13—C15120.4 (2)S1—C11—H11C109.5
C14—C13—C15115.56 (19)H11A—C11—H11C109.5
C9—C8—C12121.01 (19)H11B—C11—H11C109.5
C9—C8—C7119.33 (18)S2—C10—H10A109.5
C12—C8—C7119.26 (18)S2—C10—H10B109.5
N1—C14—C13179.3 (2)H10A—C10—H10B109.5
O1—C7—C4121.3 (2)S2—C10—H10C109.5
O1—C7—C8118.9 (2)H10A—C10—H10C109.5
C4—C7—C8119.80 (19)H10B—C10—H10C109.5
C3—C4—C5119.8 (2)C6—C5—C4120.0 (3)
C3—C4—C7122.3 (2)C6—C5—H5120.0
C5—C4—C7117.9 (2)C4—C5—H5120.0
C8—C9—S1120.97 (16)C6—C1—C2120.8 (3)
C8—C9—S2118.70 (17)C6—C1—H1119.6
S1—C9—S2120.31 (12)C2—C1—H1119.6
C13—C12—C8127.4 (2)C1—C6—C5120.3 (3)
C13—C12—H12116.3C1—C6—H6119.9
C8—C12—H12116.3C5—C6—H6119.9
N2—C15—C13178.5 (3)C1—C2—C3119.9 (3)
C4—C3—C2119.3 (3)C1—C2—H2120.1
C4—C3—H3120.4C3—C2—H2120.1
C2—C3—H3120.4
C9—C8—C7—O1−119.9 (2)C10—S2—C9—C8−129.17 (19)
C12—C8—C7—O153.0 (3)C10—S2—C9—S151.99 (17)
C9—C8—C7—C461.1 (3)C14—C13—C12—C86.1 (4)
C12—C8—C7—C4−126.1 (2)C15—C13—C12—C8−174.6 (2)
O1—C7—C4—C3−156.3 (2)C9—C8—C12—C13−167.0 (2)
C8—C7—C4—C322.7 (3)C7—C8—C12—C1320.3 (3)
O1—C7—C4—C522.0 (3)C5—C4—C3—C21.2 (4)
C8—C7—C4—C5−159.0 (2)C7—C4—C3—C2179.5 (2)
C12—C8—C9—S117.8 (3)C3—C4—C5—C6−2.8 (4)
C7—C8—C9—S1−169.48 (15)C7—C4—C5—C6178.8 (3)
C12—C8—C9—S2−161.03 (16)C2—C1—C6—C50.5 (6)
C7—C8—C9—S211.7 (3)C4—C5—C6—C12.0 (5)
C11—S1—C9—C8−148.69 (19)C6—C1—C2—C3−2.1 (6)
C11—S1—C9—S230.13 (17)C4—C3—C2—C11.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···S10.962.823.360 (3)116
C12—H12···S10.932.663.040 (2)105

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2822).

References

  • Anabha, E. R. & Asokan, C. V. (2006). Synthesis, pp. 151–155.
  • Dahne, S. (1978). Science, 199, 1163–1167. [PubMed]
  • Dastidar, P., Guru Row, T. N. & Venkatesan, K. (1993). Acta Cryst. B49, 900–905.
  • Freier, T., Michalik, M. & Peseke, K. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1265–1271.
  • Homrighausen, C. L. & Krause Bauer, J. A. (2004). Acta Cryst. E60, o1828–o1829.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • MacScience (2002). XPRESS MacScience Co. Ltd, Yokohama, Japan.
  • Michalik, M., Freier, T., Reinke, H. & Peseke, K. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 114–119.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography